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Abstract15

Adaptive biases in favor of approaching, or looming, sounds have been found16

across ages and species, thereby implicating the potential of their evolution-17

ary origin and universal basis. The human auditory system is well-developed at18

birth, yet spatial hearing abilities further develop with age. To disentangle the19

speculated inborn, evolutionary component of the auditory looming bias from20

its learned counterpart, we collected high-density electroencephalographic data21

across human adults and newborns. As distance-motion cues we manipulated22

either the sound’s intensity or spectral shape, which is pinna-induced and thus23

prenatally inaccessible. Through cortical source localisation we demonstrated the24

emergence of the bias in both age groups at the level of Heschl’s gyrus. Adults25

exhibited the bias in both attentive and inattentive states; yet differences in26

amplitude and latency appeared based on attention and cue type. Contrary to the27

adults, in newborns the bias was elicited only through manipulations of intensity28

and not spectral cues. We conclude that the looming bias comprises innate com-29

ponents while flexibly incorporating the spatial cues acquired through lifelong30

exposure.31
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Introduction34

One of audition’s main functionalities lies in continuously monitoring our surroundings35

and alerting us in case of potential threats. Identifying sounds as approaching can be36

crucial for survival because impending objects are more likely to threaten one’s own37

existence, primarily in an evolutionary sense1;2. The effect of approaching sounds being38

more salient than receding ones constitutes the “auditory looming bias”; a perceptual39

bias, presumably present to warn the sensorimotor system to take protective action.40

Studies corroborate this hypothesized protective nature across vertebrates: Looming41

sounds trigger defensive freezing and escape behaviors3; they moreover make animals42

learn faster in associative conditioning4 and preferentially look toward the direction43

of the looming sound source5;6. Humans further exhibit this bias through faster reac-44

tion times7, higher accuracy in motion discrimination8 as well as overestimation of45

intensity changes and time to collision9. Due to its universal presence and ecological46

importance, the looming bias has been intensively studied. Although investigations47

have focused on younger and older humans separately, comparative studies testing48

those age groups on identical stimuli are needed. This lack of cross-age comparisons49

leaves developmental aspects of the auditory looming bias unclear.50

If encoded through the evolution of species, some aspects of the looming bias may51

not require prior experience to be facilitated. Human newborns are presumably naive52

to the possibly threatening nature of looming objects and offer at best limited prenatal53

experience stemming from exposure. They, therefore, pose the best example of an54

unprimed human brain state that can be studied in a non-invasive manner. In fact,55

newborn listeners showed enhanced orientating response indicated by longer looking56

time, when audio-visual stimuli denote approaching motion10. Infants as young as four57

months moreover better discriminated looming sounds compared to receding ones1158

and have been found to exhibit avoidance behavior when presented with them12.59

Although behavioral evidence from small samples of humans of a very young age is60

present, its interpretation comes with uncertainty.61

Neurophysiological data can offer a complementary and more objective measure62

of the underlying mechanisms. Animal research revealed a crucial role of the auditory63

cortex in eliciting looming bias: Asymmetries in its activation reflected the loom-64

ing preference13, while its silencing inhibited looming-induced defense behaviours14.65

Human neuroimaging studies found brain areas biased in favor of looming sounds66

to span an extended network, covering temporal, parietal, and frontal cortical67

regions15;16;17. The specific involvement of the auditory cortex is, however, surprisingly68

obscure in those: Its appearance as an important contributing region is inconsistent69

across studies and raises the need for more investigations targeted towards it, under70

consideration of different human brain states. Apart from that, localisation of the71

auditory cortex in neuroimaging studies is non-trivial: Although the medial part of72
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the anatomical region of Heschl’s gyrus (HG) is generally considered to host the pri-73

mary auditory cortex, it remains a functional definition suffering large inter-participant74

variability18.75

The vast majority of previous studies on auditory looming bias moreover rely on76

intensity ramps as one particular cue for auditory distance motion10;4;19;20;21;15;6;9;11;77

yet sound sources moving along the distance dimension exhibit changes across multiple78

auditory distance cues22. In that context, manipulations of the sound’s spectral shape79

have been used to elicit looming bias, thereby demonstrating that intensity ramps per80

se are not a necessary prerequisite8. Such spectral shape cues result from the acous-81

tic filtering of an incoming sound wave by the listener’s morphology, especially their82

pinnae. Intensity and spectral cues differ in terms of age-related exposure and the83

corresponding need for adaptation: HG is already developed around the 24th week of84

gestation23 and fetal hearing is functional before birth. Sounds, passing through the85

mother’s abdomen and amniotic fluid during development, undergo spectral modifica-86

tion and attenuation. Intensity ramps are already prenatally accessible24, and evidence87

suggests that spectral information is also processed25. Yet newborns are additionally88

subject to abrupt changes in the environment postpartum. This substantially affects89

the characteristics of spectral cues, thereby necessitating a new acquisition or adapta-90

tion process. Both cues are known to elicit the bias under task-relevant conditions in91

human adults. It is, though, rather unclear, whether they also do so during inatten-92

tive listening and how they relate to each other in terms of bias characteristics and93

innate encoding.94

In order to disentangle the speculated inborn, evolutionary component of the95

looming bias from counterparts potentially learned through cue-specific exposure, we96

collected high-density electroencephalography (EEG) data in young adults and new-97

borns. As distance-motion cues we manipulated either the sound’s intensity or spectral98

shape. Investigations were done at the level of the scalp as well as HG; a choice made99

based on prior literature26;27 and due to it comprising the functionality of the pri-100

mary auditory cortex. We hypothesized that the looming bias’ elicitation in young101

adults should be largely independent of cue type and not subject to voluntary atten-102

tion, in order to facilitate an effective warning mechanism. Pertinent to evolutionary103

processes, related aspects should be present already at the time of birth. As, though,104

spectral cues are highly dependent on anatomy and familiarization, the manifestation105

of a spectrally induced looming bias was unexpected in newborn participants.106

Methods107

Overview108

Participants were exposed to moving and static sounds presented from either the left109

or right side in a virtual auditory environment (Fig. 1a). Stimuli were filtered by sets110

of individually measured head-related transfer functions (HRTFs), namely a set of111

filters representing the sound modifications induced by one’s pinnae, head and torso.112

Moving sounds differed from static sounds by having a brief cue transition phase about113

halfway through the stimulus (Fig. 1b, top, grey area represents the transition phase114

in time). The movement percept for our stimuli was created by changing either the115
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intensity (Fig. 1b, top, blue curves) or the spectral shape (Fig. 1b, bottom, red) of116

a broadband harmonic tone complex. In the first case (intensity stimuli, blue), the117

intensity changed with time (Fig. 1b, top, blue) while the spectral content remained118

the same (Fig. 1b, bottom, blue), essentially representing a mere intensity offset.119

Spectral stimuli maintained their broadband intensity over time (Fig. 1b, top, red),120

but transitioned in spectral content between a flat spectrum and the measured HRTF121

(Fig. 1b, bottom, red). This separation was essential for our targeted dissociation122

between prenatally accessible intensity cues and more heavily affected, at best less123

accessible spectral cues. The beginning of the transition phase, hereafter referred to as124

the ”change event” (reference point in time: 0 ms), was temporally jittered (50 ms)125

in order to diminish the temporal predictability of the event. The transition phase126

itself was kept very short (10 ms) to assure high temporal precision in the analysis of127

neural responses evoked by the change event. Static sounds were presented in 50% of128

all cases and served two purposes. First, they ensured listeners were not able to predict129

the stimulus category already from stimulus onset, as static sounds were constructed130

with the same onsets as the moving stimuli (but no transition). Second, they served131

as catch trials to ensure no random responses were given throughout the experiment.132

Fig. 1 Experimental design. a) Illustration of experimental factors movement and cue type. The
transition between two sounds of different intensities (top, blue) or spectral shapes (bottom, red)
creates the sensation of a moving sound source. Thick arrows represent 50% transition probability
for motion trials (dark = looming; light = receding), while thin circular arrows indicate a 50%
probability for static trials. b) Magnitude profile over time (top panel) and frequency (bottom panel)
of all implemented stimuli. Filtering by the native spectral shape evokes a spatially externalised
auditory percept28. Sounds devoid of native spectral characteristics (flat spectrum) do not elicit this
externalisation, making sounds appear close to one’s ear.
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We first investigated the role of attention in the elicitation of the looming bias.133

To this end, adult participants underwent first a passive (inattentive) and then an134

active (attentive) listening part. In the passive listening part, participants’ attention135

was diverted through a silent and subtitled movie, while they were being exposed136

to the stimuli. During the active listening part, they performed a three-alternative137

motion discrimination task adapted from a previous study8. In it, they assessed the138

movement as looming, receding, or static by keyboard button press. EEG recordings139

from newborn participants were collected during sleep.140

This study was not preregistered.141

Adult listeners142

The sample size for the adult group was determined based on the following consider-143

ations: As of Baumgartner et al. 8 , 15 participants should be sufficient to detect the144

looming bias via scalp potentials evoked at latencies of about 160 ms for the active145

spectral condition. We decided to double the sample size because effect sizes were146

expected to be smaller under passive listening conditions, because we wanted to allow147

for finding neural signatures also at shorter latencies (usually of smaller amplitude148

and therefore harder to discern), and because we are aiming to re-use the data for149

exploratory connectivity studies, which generally require larger sample sizes29.150

Considering possible exclusions, we thus invited 35 healthy young adults with no151

self-reported indications of psychological and neurological disorders or acute or chronic152

heavy respiratory diseases that may prevent the participant from sitting still during153

the EEG recording. We initially measured participants’ hearing thresholds between 1154

and 12.5 kHz AGRA Expsuite application;30 to ensure that they deviated not more155

than 20 dB from their age mean31. Twenty-nine participants fulfilled this requirement156

and took part in the study. Sex and age were self-reported by the participants (15157

female: 25.0±2.60 years old; 14 male: 25.1±2.77 years old). No data on race/ethnicity158

was collected. An error rate in catch-trials (static sounds) exceeding 20% was used159

as an exclusion criterion and resulted in one exclusion (female, 45.2% errors). Hence,160

N=28 participants within a age range of 21− 32 years were ultimately included in the161

study.162

All participants signed informed consent prior to testing, were neither deceived163

nor harmed in any way and were informed that they could abort the experiment164

at any time without any justification or consequences. The study was conducted in165

accordance with the standards of the Declaration of Helsinki (2000). No additional166

ethics committee approval was required given the non-medical non-invasive nature of167

our study, as per the Austrian Universities Act of 2002. In total, experiments lasted168

around five hours per participant and participants received monetary compensation169

in return for their time.170

Newborn listeners171

Regarding the newborn sample size, previous event-related potential studies on172

neonatal auditory change detection reliably found effects with about 40 partici-173

pants32;33;34;35;36. Since, due to the very specific design and paradigm, null results174
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were to be expected in our study, we decided to substantially increase the sample size175

and recruit about 100 participants.176

We recruited 104 healthy, full-term newborns (0–4 days after birth). Their parents177

provided information about the sex of the newborn participants (59 male, 45 female),178

as well as their birth order: 46 were firstborns, 34 were second, 14 were third child179

and 6 had more than 3 siblings. None of them were twins. Mean gestational age was180

40.17 ± 1 weeks and mean birth-weight 3787 ± 373 g. No data on race/ethnicity was181

collected. All newborns had normal hearing as indicated by successfuly completing182

a Brainstem Evoked Response Audiometry (BERA) test prior to the experiment.183

Participant exclusion was based on the proportion of useful trials: after data pre-184

processing, 33 participants maintained less than 60% of the trials and were therefore185

excluded. Data of N=71 newborns were analysed for the present study.186

Informed consent was obtained from either one or both parents. Mothers were given187

the choice to be present during the EEG recording; fathers were not given this choice,188

as, according to the hospital rules, they were only allowed to enter the ward during a189

daily visiting time window that did not overlap with the recording time. The study190

fully complies with the World Medical Association Helsinki Declaration (2000) and all191

applicable national laws, as approved by the National Public Health Center, Hungary.192

Stimuli193

We presented harmonic tone complexes (F0 = 100 Hz, bandwidth: 1 − 16 kHz, phase194

curvature: 0.5)37 either from right or left on the horizontal plane (±90◦ azimuth, 0◦195

elevation). The duration of the stimulus was 1.2 s including on- and offset squared sine196

ramps of 10 ms. For moving (looming/receding) stimuli, after 600± 50 ms, the initial197

tone complex was crossfaded into the final tone complex using a linear ramp with a198

duration of 10 ms. Static stimuli, conversely, remained constant throughout.199

The looming and receding sensations were created by two different types of spatial-200

distance cues, namely intensity and spectral shape (Fig. 1). The intensity manipulation201

resulted in a sound appearing to recede while its intensity decreased with time. We pre-202

sented sounds crossfading between +2.5 dB (near position) and −2.5 dB (far position)203

to induce looming and receding sensations (Fig. 1a, top). For changes in spectral shape,204

we manipulated the individually recorded (adults) or semi-individualized (newborns)205

HRTFs (see section Recordings in adult listeners) following the procedure introduced206

in Baumgartner et al. 8 . The spectral shape is induced by the acoustic filtering prop-207

erties of the listener’s individual morphology (pinna, head, and torso) and depends208

on the distance and location of a sound source38. The highest spatial dependency is209

found at high frequencies. A native spectral shape reflects the characteristics of the210

stimulus as measured at the level of the ear canal, originating from a source positioned211

at a distance of 1.2m (far position) from the listener. Flattening the spectral shape212

while keeping the overall intensity constant, leads to the perception of a near position213

(at/inside the participant’s head; Fig. 1a, bottom).214
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Procedure215

Moving (looming/receding) and static trials were randomized throughout the exper-216

iment and balanced over blocks, with 50% static and 50% moving sounds. Within217

moving sounds, 50% were looming and 50% receding. Within static sounds, 50% cor-218

responded to the looming stimulus onset and 50% to the receding stimulus onset. The219

different cue types were applied block-wise. Apart from movement and spatial cue220

type, we block-wise manipulated whether the sound source was presented from the221

left or the right side of the listener. The experimental procedures were programmed222

in Matlab (R2018b, Mathworks, Natick, Massachusetts) using Psychtoolbox39.223

For the adult listeners, we performed the experiments in two subsequent parts,224

each one under a different attentional state (passive/active). To achieve the best pos-225

sible naivety, all listeners started with the passive condition. During that, they were226

exposed to the sounds while asked to concentrate on a muted and subtitled movie40.227

To ensure and assess that participants’ attention was focused on the movie and away228

from the sounds, they were instructed to focus on the movie’s content and informed229

that they would be questioned on it afterwards. Performance in the subsequent test-230

ing was conceived as an exclusion criterion; yet every participant could remember the231

requested details from the presented documentary, leading to no participant exclusions.232

In active listening, the participants were tasked with discriminating the movement of233

the sound (looming/receding/static) by keyboard button press. For sounds presented234

from the right side, the left arrow key was assigned to looming, the downwards arrow235

key to static, and the right arrow key to receding sounds. For sounds coming from236

the left, the key for looming was C, for static X, and for receding Y. With this setup,237

the key for looming was always nearer to the participant than the key for reced-238

ing sounds. Responses were permitted starting from the beginning of the crossfade239

(”change event”, Fig. 1b). After keypress (or after the sound offset, if the response240

already occurred during sound presentation), an inter-stimulus interval of 800± 50ms241

preceded the subsequent trial. During passive listening, the inter-stimulus interval was242

set to 500ms. In total, the experiment comprised 1600 trials, with 100 trials per con-243

dition. Within condition, 50 trials were each presented from the left and the right side244

of the listener.245

For the newborn listeners, the sound presentation was equivalent to the passive246

condition of the adults and they underwent the experiment while in deep sleep. In247

contrast to active sleep, this state lasts longer (up to 60-90 min), has no rapid eye248

movements and the breathing and heart rates of the newborns become more regular.249

Overall it is a preferable state for EEG recording, as the appearance of artifacts is250

much less likely41;42;43. In total, the experiment lasted approximately 30 minutes and251

consisted of 400 trials, with 100 trials per condition (as only the passive condition was252

considered, in contrast to the adult experiment). Within condition, 50 trials were each253

presented from the left and the right side of the listeners.254

Recordings in adult listeners255

We initially acquired the HRTFs for every participant individually. This was done by256

placing the listener in the center of a spherical array (radius of 1.2m) of loudspeakers257
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(E301, KEF), positioned in a semi-anechoic room (T60 = 50ms). Two of the loud-258

speakers were aligned to either side of the listener’s interaural axis. Small microphones259

(KE4-211-2, Sennheiser) were inserted in the listener’s ear canals for recording. As260

measurement signals we used exponential sweeps ranging from 20Hz to 20 kHz within261

6 s. Sweeps were multiplexed across directions in order to speed up the whole measure-262

ment duration and thus minimize the risk of artifacts introduced by small movements263

of participants44. The acoustic influence of the equipment was removed by equalizing264

the HRTFs with the transfer functions of the equipment. Those were derived from265

prior reference measurements, during which the in-ear microphones were placed at266

the centerpoint of the spherical loudspeaker array in the absence of the listener. The267

measured listener-specific HRTFs were then used to filter the presented stimuli. This268

individualized filtering procedure creates the impression of virtual sound sources in269

space when presented via headphones28. To verify our HRTF measurement, prior to270

the actual experiment we introduced the listeners to three horizontal sound trajecto-271

ries45, that started in front of them and moved in a circle around their head twice.272

Each of the trajectories was filtered with either their own, or one of two arbitrarily273

chosen non-individual HRTFs. Participants could listen to the different trajectories as274

often as they wanted before choosing the trajectory that felt most natural to them.275

Over half of the participants (53.6%) consistently chose the trajectory filtered with276

their own HRTF set. 17.9% consistently chose a different HRTF and the remaining277

participants made inconsistent choices; both could occur due to coincidental similari-278

ties between their own and a non-individual HRTF set. For the main experiment, the279

individually measured HRTF set was replaced by the non-individual HRTF set only280

if the participant consistently preferred that set during the verification process.281

To record scalp activity, we used a 128-channel EEG system (actiCAP with282

actiCHamp; Brain Products GmbH, Gilching, Germany) and recorded at a sampling283

rate of 1 kHz. For sound presentation, participants wore ER-2 insert earphones (Ety-284

motic Research Inc., Grove Village, Illinois). After concluding the experiment, we285

made an optical 3D scan of the electrode positions using the Structure Sensor with286

Skanect Pro (Occipital Inc., Boulder, Colorado). Adult experiments took place at the287

Acoustics Research Institute of the Austrian Academy of Sciences.288

On a different day, a structural T1-weighted scan was recorded at the MR center of289

the SCAN-Unit (Faculty of Psychology, University of Vienna) with a 3Tesla magnetic290

resonance imaging system (MRI; 32-channel head coil; Siemens MAGNETOM Skyra,291

Siemens-Healthineers, Erlangen, Germany). Structural images were acquired using a292

magnetization-prepared rapid gradient-echo sequence with the following parameters:293

TE = 2.43 ms; TR = 2300 ms; 208 sagittal slices; field-of-view: 256x256x166 mm;294

voxel size: 0.8x0.8x0.8 mm.295

Recordings in newborn listeners296

Since HRTF measurements are not feasible with newborn listeners, we used a combi-297

nation of two anthropometric measures to individualize a template HRTF by means298

of frequency scaling46. One metric denotes the pinna-cavity height as measured from299

the inter-tragal notch to the rim of the helix. The other metric denotes the head width300

as measured from side to side at the point in front of the tragus that is defined by the301
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condyle of the mandible. As the template HRTF, we selected one from the institute’s302

public database (NH92)47 with a pinna-cavity height of 44mm and a head width of303

134mm.304

To record brain activity, we used a 65-channel EEG system (R-Net with305

actiCHamp; Brain Products GmbH, Gilching, Germany) and recorded at a sampling306

rate of 500 kHz. A 100 Hz online low-pass filter was applied. Electrodes were placed307

according to the International 10/20 system. The Cz channel served as the reference308

electrode, while the ground electrode was placed on the midline of the forehead. Dur-309

ing the recording, impedances were kept below 15 kΩ. Stimuli were presented using310

an external sound card (Maya22 USB, ESI Audiotechnik GmbH, Leonberg, Germany)311

with ER-2 Insert Earphones (Etymotic Research Inc., Elk Grove Village, IL, USA)312

placed into the newborns’ ears via ER2 Foam Infant Ear-tips. EEG was recorded313

throughout stimulus presentation. Newborn experiments took place at the Department314

of Obstetrics-Gynecology, Szent István Hospital, Budapest, Hungary.315

Newborn participants were asleep for the duration of the stimulus presentation.316

Sleep state was determined based on standardised behavioural criteria48. Only par-317

ticipants that were in quiet sleep for the whole 35-minute duration of the experiment318

were included in the study. In addition to the behavioural criteria employed, the EEG319

signal was visually inspected, to ensure muscle tension was tonic, respiration regular320

and eye movements absent.321

Behavioral analysis322

To investigate the presence of the looming bias behaviorally in the adult listener323

pool, we jointly analysed choice and response time data by using a linear ballistic324

accumulator model49, as it provides a tractable analytical solution for multiple con-325

ditions50. The model’s design considers a multi-alternative response time task, where326

each possible response competes against the others by accumulating information with327

a specific speed vi, termed the drift rate. Each accumulator starts from a random328

point, sampled from the uniform distribution [0, A]. The first accumulator to reach329

the threshold b determines a participant’s response. A non-decision time t0 is added330

to the time of threshold exceedance, accounting for remaining non-specific variance331

(e.g., motor latency). We used the hierarchical Bayesian implementation of the lin-332

ear ballistic accumulator, to study parameter changes at a group level50;51. Via this333

approach, the estimation procedure could rely on fewer trials while accounting for334

between-participant variability. For the parameter estimation, we chose the differen-335

tial evolution Markov Chain Monte Carlo (DE-MCMC) sampling50;52, which accounts336

for the correlation among free parameters.337

We considered the moving trials (looming and receding) and clustered them by338

cue type (spectral and intensity) and response correctness (correct and incorrect).339

The model framework instantiates one accumulator per condition and response choice.340

Based on our design, we fitted 8 accumulators per participant. This configuration led341

to 11 parameters per participant, of which 8 represented drift rates per condition342

and the 3 remaining parameters, namely the starting interval, threshold, and non-343

decision time, were shared across conditions. Starting points for the Markov chains344

were drawn according to the following normal distributions truncated to only allowing345
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for positive values: A ∼ N(2, 0.2), b ∼ N(1, 0.1), drift rates for correct responses346

vc ∼ N(3, 0.3) and for incorrect responses ve ∼ N(1, 0.1), and t0 ∼ N(0.2, 0.02). Due347

to the hierarchical settings, the participant-level parameters depended on the group-348

level truncated normal distribution with its own mean and standard deviation. Priors349

of these group-level parameters were sampled from truncated normal distributions,350

with Aµ ∼ N(2, 1), bµ ∼ N(2, 1), drift rates for correct responses vcµ ∼ N(3, 1)351

and incorrect responses veµ ∼ N(1, 1), and t0µ ∼ N(0.2, 0.1). Standard deviation352

parameters were defined as gamma distributions with both shape and scale parameters353

set to 1, except for t0, for which the scale parameter was set to 3. The choice of those354

priors was based on the design proposed in50 and51. To account for the difference in355

experimental procedures, we here doubled the overall number of samples and tripled356

the burn-in length. As a result, the fitting procedure used 32 interacting Markov357

chains, each with a length of 8000 samples. 6000 out of those were burn-in samples and358

a thinning of 5 samples was applied on the remaining ones. Thinning was introduced359

to reduce the amount of autocorrelation. To assess the convergence of the MCMC, we360

relied on the Gelman-Rubin diagnostic, that returned a mean value of 1.006 ± 0.003361

(max 1.015)53. Our parameter fitting procedure returned the following means and362

standard deviations for the shared parameters at a group level: A = 0.573 ± 0.720 s,363

b = 1.694± 0.521 s, t0 = 0.139± 0.208 s.364

We additionally evaluated the ability of the model to replicate the actual data365

by running posterior prediction checks for each condition, assessed by computation366

of the two-sided p-value and 95% credible intervals54 Ch. 6. For each participant,367

we randomly drew 50 samples from each chain. As test statistic we considered the368

proportion of simulated response times falling within the first and third quartiles of369

the corresponding values for the actual data. The same procedure was followed for the370

simulated response accuracies.371

To finally assess the difference in drift rates between the looming and receding372

conditions, we sampled the mean and variance of the drift rates from the posterior373

distributions at the group level. We used these parameters to characterize a Gaussian374

distribution, from which we generated N = 10000 samples per motion direction. In375

order to quantify the looming bias, we defined the ratio of samples indicating a higher376

drift rate for looming than receding, relative to the total number of samples: r =377

N−1
∑N

i=0 1R+(vL,i − vR,i), where vL,i denotes a sampled drift rate for looming, vR,i378

for receding and 1R+(·) represents the indicator function returning one for strictly379

positive values, zero otherwise. We repeated this procedure 10000 times to compute380

the probability of observing a ratio larger than chance level (i.e. 0.5) using a one-tailed381

89% credible interval55. We finally computed the ratio separately for each cue type.382

For the above analysis we used R (R Core Team, 2023) with the pack-383

ages: data.table56, msm57, coda58 and ggplot259.384

Adult EEG analysis385

EEG data were visually inspected to single out potential bad channels, which were386

then interpolated. The data were subsequently bandpass-filtered between 0.5−100 Hz387

(Kaiser window, β = 7.2, n = 462) and epoched to stimulus onset ([−200, 1500]ms);388

a threshold chosen to additionally comply with relevant previous studies8;26. A hard389
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threshold of −200 to 800µV was additionally applied, to detect trials that still390

had large outlier values, potentially denoting issues that went undetected by visual391

inspection (e.g., excessive movement artifacts, intermittently broken channels). A fur-392

ther step for automatic channel rejection was used to detect potentially undetected393

noisy channels. If found, they would next be visually inspected and interpolated. No394

additional noisy channels were detected for any of the participants. We performed395

independent component analysis (ICA) decomposition and followed up with a man-396

ual artifact inspection and rejection of oculomotor artifacts (up to 3 components397

removed per participant). The data were thereafter re-referenced to their average and398

re-epoched to the change event ([−550, 850]ms). The channel positions were subse-399

quently overwritten by the individual ones, which had been acquired by manually400

tagging them on the 3D head scans we recorded after each experiment. Trials were401

equalized within each participant to match the minimum amount within the partici-402

pant after trial rejection, aiming at an equal distribution across the recordings. More403

specifically, we selected every (y/x)th trial in order to remove x trials from a set of y404

trials, a process rendering the same amount of trials across conditions within a partic-405

ipant. On average, this resulted in 92± 4.6 trials per participant and condition. Scalp406

ERPs were additionally low-pass filtered at 20Hz (Hamming-based FIR, n = 150) with407

ERPLAB60 and baseline-corrected by a 100-ms-pre-event interval. We deliberately did408

not apply this low-pass filtering directly at the beginning; that way our initial filter-409

ing (0.5− 100Hz) still allows for later exploratory analyses on an extended frequency410

range. All steps were undertaken in EEGLAB61 as well as custom Matlab scripts.411

Anatomical MRIs for all participants were segmented via Freesurfer62, v 7.1.1412

and used to create a study protocol on Brainstorm63. For three of the participants,413

the default anatomical models of brainstorm were used (ICBM152 brain template),414

as we could not acquire individual MRIs due to incompatibilities with the scanner415

(suspicion of metallic parts in the body). Anatomical models were created via Open-416

MEEG64: for the boundary element model (BEM) surfaces we used 1922 vertices per417

layer for scalp, outer skull and inner skull, and a skull thickness of 4mm. The relative418

conductivity was set to 0.0125 for the outer skull and to 1 for the remaining layers.419

For each participant we performed a manual co-registration between the head mod-420

els and the individual channel locations. To infer cortical source activity, we used the421

dynamic statistical parametric mapping (dSPM) inverse solution65, based on previous422

investigations showing better HG localisation performance compared to standard-423

ized low-resolution electromagnetic tomography (sLORETA)66. For that, the noise424

covariance was calculated from a 200ms pre-stimulus interval, the source orientations425

were considered constrained and source signals were reconstructed at 15000 vertices426

describing the pial surface. For consistency and comparability with previous relevant427

literature26;27, evoked HG activity was extracted according to the Desikan-Killiany428

parcellation scheme as defined in Brainstorm (transverse temporal region)67.429

Amplitudes and latencies of the N1 and P2 components were extracted based on430

the individual averaged time courses of the participants and the function findpeaks431

(Matlab R2018b, Mathworks, Natick, Massachusetts). Since we already low-pass fil-432

tered the data at 20 Hz we deliberately opted against additional low-pass filtering433

through some form of temporal averaging, and simply took the amplitude and latency434
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of peaks identified within certain time windows that are consistent with values of N1435

and P2 latencies reported in the literature. We set the time windows, in which to436

search for the components, after careful inspection of all individual ERP profiles, in437

order to ensure no local minima or fluctuations affected our results. Considering lit-438

erature values and adapting the intervals after visual inspection, for the scalp ERPs,439

the N1 component peak was considered within the time window from 82 to 182 ms440

after the change event. For the source analysis, this window was placed slightly earlier,441

from 77 to 177 ms. The P2 component peak was defined in a case-specific manner:442

starting at the timing of each individual N1 peak, the P2 peak was searched within443

a subsequent window of 150 ms. In cases where no peaks could be found, such as for444

poor source localisation or untypical scalp timeseries profiles lacking peaks, the cor-445

responding participants where not considered in the statistical analyses (concerned 2446

participants each for scalp P2, source N1, and source P2). We opted for that solution447

as it was deemed a more objective one, compared to arbitrarily assigning a peak value448

based on literature values or participant means.449

Statistics for scalp ERPs and evoked HG activity were analyzed with R (R Core450

Team, 2023) and JASP68. Repeated-measures ANOVAs were done after testing for451

sphericity (Mauchly’s W) and normality (Q-Q plot) of our data. For the assessment452

of statistical differences in the time series we used a cluster-based permutation test453

implemented in FieldTrip (ft timelockstatistics)69: We assessed the p-value via454

500 Monte Carlo permutations and implemented a two-tailed t statistic (α = 0.05)455

on the samples, which then summed up within a cluster to form the cluster-level456

values. As our cluster-level metric, we used the maximum of the cluster-level statistics457

in a permutation test (α = 0.05). Effect size was assessed by means of Cohen’s d458

(meanEffectSize implemented in Matlab). An additional Bayesian repeated-measures459

ANOVA performed on the onset scalp-ERPs considered the factors of attention (active460

or passive), cue type (intensity or spectral) and position (near or far) in a 2x2x2 design.461

To that end, we averaged the corresponding onset scalp time series (vertex electrode462

Cz) across the time interval between 0 and 200 ms, in order to capture potential463

effects linked to the sound onset. We investigated the effects across matched models464

using default settings (r scale fixed effects = 0.5, r scale random effects = 1, r scale465

covariates = 0.35). This analysis was implemented in JASP, version 0.17.368.466

Newborn EEG analysis467

Data were highpass-filtered at 0.05 Hz (Hamming window, n = 33000)70 and lowpass-468

filtered at 80 Hz (Hamming window, n = 84). Compared to the adults, we chose469

the highpass cutoff frequency much lower for the newborns to ensure inclusion of470

the slow oscillations that are typical for neonate brains70;71. After visual inspection,471

noisy channels were singled out and interpolated (maximally 5 per participant) using472

the default spline interpolation algorithm implemented in EEGLAB61. We next re-473

referenced our data to their average and epoched them ([−100, 800]) time-locked to474

the change of the stimulus (beginning of the cross-fade, Fig. 1b, top). A baseline cor-475

rection using a 100-ms-pre-event interval was performed. A hard threshold of −100 to476

100 µV was additionally applied, to detect large outlier trials. Data were finally visu-477

ally inspected and noisy epochs were manually removed. Trial numbers were equalised478
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across conditions within each participant by removing trials equally distributed across479

the recordings, in order to match the minimum amount within the participant. Par-480

ticipants with less than 60% of the trials per condition were excluded from the study.481

This process resulted on average in 82 ± 8.5 trials per participant in every condition.482

Scalp ERPs were low-pass filtered at 20 Hz (Hamming-based FIR, n = 140) with483

ERPLAB60. All pre-processing steps were undertaken in the EEGLAB61 free software484

as well as custom Matlab scripts.485

Identically to the adults (Adult EEG analysis), statistical differences on the scalp486

topographies were assessed by cluster-based permutation testing. Effect size was in all487

cases assessed by means of Cohen’s d (meanEffectSize implemented in Matlab). In488

contrast to the EEG recordings in the adult group, Cz was used as a reference during489

newborn recordings. Following the common practice of infant ERP analysis, a cluster490

of channels was considered to estimate the effects72. We calculated the scalp-ERPs491

based on the emerging frontocentral cluster of electrodes, comprising electrodes Fp1,492

AF7, AF3, AFz, AF4, F5, F3, F1, Fz, F2, F4, F6, FC3, FC1, FC2, FC4, C1, C2493

and C4.494

In the case of the onset ERPs, an additional Bayesian repeated-measures ANOVA495

was done, with the factors of cue type (spectral or intensity) and position (near or496

far) in a 2x2 design. To that end, the corresponding time series were averaged across497

the time interval of 0 − 200 ms, considered to capture the onset-locked responses of498

the stimuli. As the time interval of choice was to a degree arbitrary, we repeated the499

analysis by considering the data over the longer time interval of 0−400 ms. Changing500

the time interval did not change our null results in the onset analyses. This analysis501

was implemented in JASP, version 0.17.368.502

For the anatomical modelling we replicated the process followed in the adult data503

analysis, with the following differences: in the absence of individual MRIs, template504

anatomical models implemented in brainstorm (’Oreilly’ 0.5 month brain template)505

were used, fitted with the default channel cap adjusted to our electrode configuration.506

The relative conductivity of the outer skull was set to 0.0041 and to 0.33 for the507

remaining layers73.508

An additional Bayesian repeated-measures ANOVA considered the factors of509

motion (looming or receding) and hemisphere (left or right) in a 2x2 design for the510

spectral condition. To that end, we averaged the corresponding HG time series across511

the time interval between 250 and 450 ms in the looming as well as receding spectral512

cue time series. As there were no specific peaks that would allow us to exactly follow513

the statistical process we followed in the adult data, we chose this time window as514

representative of the looming bias activation, based on the significant clusters found515

for the intensity condition. We investigated the effects across matched models using516

default settings (r scale fixed effects = 0.5, r scale random effects = 1, r scale covariates517

= 0.35). As the choice of this time interval is to some degree arbitrary, we performed518

robustness tests by repeating the same procedure for an earlier time interval (200−400519

ms), as well as for the latest interval of 600−800 ms, qualitatively showing the biggest520

deviation between the looming and receding time series. Changing the considered time521

windows did not change our results. This analysis was implemented in JASP, version522

0.17.368.523
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Results524

Behavioural results: Looming sounds speed up evidence525

accumulation526

The adult participants detected static sounds very accurately (hit rates:527

[0.955, 0.984, 0.995], denoting 25%, 50%, and 75% percentiles) and quickly (response528

times for hits: 0.944 ± 0.114 s, denoting mean ± standard deviation) throughout the529

entire active task. This high performance on catch trials confirmed our listeners were530

attentive. When comparing to static sound detection with the Wilcoxon Signed-Rank531

test, the discrimination of movement direction in motion trials was substantially harder532

(hit rates: [0.514, 0.648, 0.757], V = 406, N = 27, p < .001) and slower (response times:533

1.017 ± 0.170 s, V = 36, N = 27, p < .001) . Given the almost perfect hit rates for534

catch trials, we simplified subsequent analyses by only considering the motion trials535

(as a two-alternative forced choice task).536

Figure 2a reports the behavioral measures of accuracy and response time across537

condition. To identify differences between motion direction and cue type, we fitted538

a hierarchical linear ballistic accumulator model with a differential evolution Markov539

chain Monte Carlo (MCMC) method52. We selected this model-based approach540

because of its advantage in accounting for the speed-accuracy trade-off on a trial-by-541

trial level74 as well as the different uncertainty levels across participants50. In this542

modeling framework, an evidence accumulation process is started for every choice543

option and trial; the accumulator hitting the response threshold first decides the choice544

as well as the response time. To study the presence of looming bias, our latent variable545

of interest was the drift rate, which quantifies the velocity of evidence accumulation546

towards a response in a forced choice task49. With drift rates fitted for every stim-547

ulus condition, the comparison between simulated and measured data revealed high548

agreement since the difference between actual and simulated hit rates (diff = −0.005,549

95%-CI [−0.110, 0.110]) and the difference in inter-quartile range of response times550

(diff = −0.020 s, 95%-CI [−.194, 0.358] s) showed no statistically significant evidence551

for deviation from zero (i.e. there is no statistical difference since the confidence552

interval includes zero, see Fig. 2a). Figure 2b shows the corresponding posterior dis-553

tributions of the drift rate estimates at the group level. Most importantly, drift rates554

turned out higher for looming than receding sounds, as confirmed by the ratio of larger555

drift rates sampled from the posterior distributions when aggregating over different556

spatial cues (r = 0.640, 95%-CI [0.518, 0.749], p(r > .5) = 0.986) and when consid-557

ering the intensity (r = 0.598, 95%-CI [0.447, 0.739], p(r > .5) = 0.896) and spectral558

condition (r = 0.684, 95%-CI [0.485, 0.837], p(r > .5) = 0.966) separately.559

Adults’ change-evoked scalp potentials: Looming bias elicited560

during passive listening561

We next investigated the looming bias by analysing the EEG responses at the scalp.562

Following prior literature8, we extracted our signals from the vertex electrode (Cz),563

a choice we subsequently validated through topographic analyses across the scalp.564

On average across looming and receding trials, the change events evoked larger scalp565
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Fig. 2 Model-based analysis of adults’ behavioural responses indicate speed-up of evi-
dence accumulation for looming sounds. a) Response times and accuracies contrasted between
actual data and simulated responses generated by a linear ballistic accumulator model with fitted
group-level parameters. Symbols denote means for response times and medians for accuracies. Error
bars denote the standard deviation (SD) for response times and the first and third quartiles for accu-
racies. b) Posterior distributions of drift rate estimates indicating the listeners’ speed of evidence
accumulation for correctly discriminated motion directions. Center lines show medians, box limits
show interquartile ranges, and whiskers show ranges up to 1.5 times the interquartile range. N=28.

potentials during the active auditory task engagement as compared to passive audi-566

tory exposure (Fig. 3a). Auditory-evoked responses displayed stereotypical N1 and P2567

components and were higher in amplitude for spectral than intensity cues.568

For the evaluation of the looming bias, we computed the difference between looming569

and receding trials (looming−receding; Fig. 3b). To investigate the scalp distribution570

and timing of emerging biases, we performed a cluster-based permutation test69 on571

the temporal evolution of scalp topographies. The emerging profile is consistent among572

all conditions and manifested as a significant central spatial cluster (Fig. 3e): For573

each cue type, in the passive condition, statistically significant looming bias cluster574

peaks were found around 120 ms (passive spectral: 112 ms, clusterstat = −4.701∗103,575

p = 0.010, d = 0.660, 95%-CI [0.352, 1.012]; passive intensity: 146 ms, clusterstat =576

−9.475 ∗ 103, p = 0.004, d = 1.175, 95%-CI [0.726, 1.761]), while no statistically577

significant evidence of a difference emerged at the later stages of auditory processing. In578

the active cases, significant clusters emerged later for both cue types (active spectral:579

197 ms, clusterstat = 1.023 ∗ 104, p = 0.002, d = 0.807, 95%-CI [0.521, 1.298]; active580

intensity: 241 ms, 2.982 ∗ 104, p = 0.002, d = 1.313, 95%-CI [0.842, 1.847]). While no581

statistically significant evidence of a bias cluster was found in the earlier time window582

for the active spectral condition, a bias cluster emerged as significant for the active583
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intensity condition, at 150 ms (clusterstat = −2.559 ∗ 104, p = 0.002, d = 1.949, 95%-584

CI [1.418, 2.701]). The time point of maximum bias manifestation within the clusters585

differed with cue type and attentive state; within the active state, the maximum bias586

appeared 44 ms later for intensity cues than spectral cues and 34 ms later in the587

corresponding passive conditions.588

For further statistical comparison of the factors cue type and attention, we589

extracted the peak amplitudes (Fig. 3c) and corresponding latencies (Fig. 3d) of the590

N1 and P2 components for all considered conditions at the vertex electrode (Cz) site;591

placed centrally in the emerging topographies, it is considered representative of the592

significant topographic clusters. Our analyses revealed significant effects of cue type593

on N1 and P2 amplitudes and latencies. The components’ peaks appeared larger and594

later for intensity cues compared to spectral ones. Attention showed little effect on N1595

peaks but significantly magnified P2 biases, especially for intensity cues.596

Specifically, for the N1 component, significant differences in amplitude (F (1, 27) =597

4.199, p = 0.05, η2G = 0.053, 95%-CI [0.00, 1.00]) and latency (F (1, 27) = 18.99,598

p < .001, η2G = 0.188, 95%-CI [0.02, 1.00]) were found only between the cue types.599

The amplitude bias was larger (diff = 0.438µV, t(27) = 2.049, p = 0.05, d = 0.463,600

95%-CI [0.01, 0.93]) and occurred later (diff = 0.016 s, t(27) = 4.359, p < 0.001, d =601

0.944, 95%-CI [0.51, 1.38]), for intensity than for spectral cues. For the P2 component,602

we found a significant main effect of the attentional state on peak amplitude biases603

(F (1, 25) = 22.51, p < .001, η2G = 0.114, 95%-CI [0.00, 1.00]), with larger biases for604

active than passive listening (diff = 0.752µV, t(25) = 4.744, p < 0.001, d = 0.703,605

95%-CI [0.34, 1.06]). For cue type, peak amplitudes (F (1, 25) = 12.77, p = 0.001, η2G =606

0.174, 95%-CI [0.01, 1.00]) and peak latencies (F (1, 25) = 19.20, p < .001, η2G = 0.231,607

95%-CI [0.04, 1.00]) turned significant, with larger (diff = 0.961µV, t(25) = 3.574,608

p = 0.001, d = 0.899, 95%-CI [0.33, 1.47]) and later (diff = 0.034 s, t(25) = 4.382,609

p < 0.001, d = 1.076, 95%-CI [0.58, 1.57]) biases for intensity than spectral cues. We610

moreover found a significant interaction between the attention and cue type factors611

(amplitude: F (1, 25) = 5.54, p = 0.027, η2G = 0.055, 95%-CI [0.00, 1.00]; latency:612

F (1, 25) = 5.072, p = 0.033, η2G = 0.051, 95%-CI [0.00, 1.00]): amplitude values for613

active intensity looming bias were higher than those for passive (diff = 1.258µV,614

t(25) = 4.071, p < 0.001, d = 1.177, 95%-CI [0.37, 1.99]), and only within the active615

condition, intensity looming biases were larger (diff = 1.468µV, t(25) = 4.262, p <616

0.001, d = 1.373, 95%-CI [0.36, 2.39]) and more delayed (diff = 0.048 s, t(25) = 4.815,617

p < 0.001, d = 1.531, 95%-CI [0.67, 2.39]) than those for the spectral condition.618

In order to check for potential distance-specific effects evoked by the starting619

positions of the sounds, we replicated the above temporal cluster-based permutation620

analysis for the neural signatures locked to the sounds’ onsets (Fig. 1b top, timepoint621

−600±50 ms). Within cue type, we compared responses to sounds representing a near622

versus far distance from the listener (spectral: flat vs. native; intensity: high vs. low).623

Adult listeners exhibited ERPs with central topographies and stereotypical deflections624

(at vertex electrode Cz) magnified through attention (Fig. 4a). Paired comparisons625

evaluated by means of cluster-based permutation testing revealed no statistically sig-626

nificant evidence for differences between near and far distances within cue type (Fig.627

4b), supporting the null effect of the simulated starting position of each sound. A 2x2x2628
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Bayesian repeated-measures ANOVA with the factors attention (active or passive),629

cue type (spectral or intensity) and position (near or far) was performed. Bayes fac-630

tor for exclusion (analysis of effects) for all factors as well as their interaction yielded631

no reliable evidence for or against a positional bias (attention: BFexcl = 0.011; cue632

type: BFexcl = 4.830; position: BFexcl = 1.431; attention x cue type: BFexcl = 0.926;633

attention x position: BFexcl = 1.983; cue type x position: BFexcl = 2.427; attention x634

cue type x position: BFexcl = 3.437).635

Fig. 4 Adult participants’ (N=28) ERPs locked to sound onset show no differences between near
and far distances. a) Grand-average topographic maps around N1 and P2 deflections (top) and evoked
Cz potentials (bottom) depending on attention, averaged over cue type and distance b) Comparisons
of evoked Cz potentials between distances within cue type. Shaded areas denote standard errors of
means.

Adults’ source activity: Early preattentive bias in Heschl’s636

gyrus637

Based on individual brain anatomies and recorded electrode locations, we inferred the638

recorded activity on the cortical surface66. The change events evoked neural activity639

strongly focused on the targeted HG (Fig. 5a). Both the left and right HG exhib-640

ited stereotypical auditory evoked responses for all considered conditions. In addition,641

we found high activity at more posterior regions (planum temporale), while activa-642

tions seem to have leaked into the posterior regions of the insular cortex. Further643

investigation of these ROIs outside HG was out of scope of the current study.644
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As done at the scalp level, we investigated the looming bias as the difference645

between looming- and receding-evoked source activity (Fig. 5b). In both cortices,646

we observed qualitatively similar waveforms, that were also congruent to the scalp647

responses (Fig. 3b). Cluster-based permutation tests revealed a significant looming648

bias for all conditions bilaterally (for the clusters in order of appearance over time; HG649

left: active intensity: clusterstat = 249.13, p < 0.001, d = 3.91, 95%-CI [3.28, 4.69],650

passive intensity: clusterstat = 98.45, p = 0.004 d = 4.18, 95%-CI [3.29, 5.33]651

and clusterstat = 79.06, p = 0.02, d = 4.26, 95%-CI [3.29, 5.58] active spectral:652

clusterstat = 97.67, p < 0.001, d = 0.55, 95%-CI [0.43, 0.69], clusterstat = 47.31,p =653

0.003,d = 1.57, 95%-CI [1.10, 2.28] and clusterstat = 98.09,p < 0.001,d = 1.21, 95%-654

CI [0.97, 1.55]; HG right: active intensity: clusterstat = 119.54, p < 0.001, d = 0.99,655

95%-CI [0.80, 1.23] and clusterstat = 171.02, p < 0.001, d = 5.14, 95%-CI [4.22, 6.29];656

passive intensity: clusterstat = 168.44, p < 0.001, d = 1.54, 95%-CI [1.28, 1.87]657

and clusterstat = 103.38, p = 0.005, d = 2.11, 95%-CI [1.67, 2.69]; active spec-658

tral: clusterstat = 147.96,p < 0.001,d = 0.68, 95%-CI [0.55, 0.84] and clusterstat =659

120.82,p < 0.001, d = 0.78, 95%-CI [0.63, 0.98]), with the exception of the passive660

spectral condition, which only elicited the bias in the right HG (clusterstat = 57.95,661

p = 0.02, d = 2.33, 95%-CI [1.72, 3.24]; Fig. 5b, right).662
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Fig. 5 Change-evoked activity in HG of the adult participants reveals auditory looming
bias across attentional states and cue types. a) Evoked activity, averaged over looming and
receding trials, for left HG (left figure column) and right HG (right column), including lateral views
of whole-brain source activations at 120 ms (N1 peak). Shaded areas depict the standard errors of the
means. b) Looming bias (looming – receding) evoked activity for left HG (left) and right HG (right).
Horizontal lines denote the durations of significant temporal clusters. c) Peak N1 and P2 amplitude
values for evoked HG activity depending on brain hemisphere, type of cue (intensity/spectral shape
changes), and attentional state (active/passive). Error bars represent 95% confidence intervals. Aster-
isks indicate significant main effects (p < 0.05) per component. d) Peak N1 and P2 latency values
for evoked HG activity. N=28.
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Deflections representing the N1 and P2 components were used to more systemati-663

cally investigate the considered factors of attention and cue type. We extracted peak664

amplitude values and latencies for those components and quantified the bias as the665

difference between the looming- and the receding-evoked activity (Fig. 5c).666

Looming bias in the N1 amplitude depended on cue type (F (1, 25) = 6.15, p = 0.02,667

η2G = 0.040, 95%-CI [0.00, 1.00]), reflecting larger biases for the intensity compared668

to the spectral condition (diff = 0.039µV, t(25) = 2.479, p = 0.02, d = 0.4, 95%-669

CI [0.06, 0.75]). For P2 amplitudes, main effects were found not only for cue type670

(F (1, 25) = 4.77, p = 0.038, η2G = 0.027, 95%-CI [0.00, 1.00]) but also for attention671

(F (1, 25) = 10.12, p = 0.004, η2G = 0.086, 95%-CI [0.00, 1.00]): biases were stronger for672

intensity than spectral cues (diff = 0.028µV, t(25) = 2.185, p = 0.038, d = 0.33, 95%-673

CI [0.01, 0.65]) and for active than passive listening (diff = 0.052µV, t(25) = 3.181,674

p = 0.004, d = 0.6, 95%-CI [0.19, 1.02]). Significant differences for component latencies675

were only found for cue type (Fig. 5d). For both N1 (F (1, 25) = 10.99, p = 0.003,676

η2G = 0.094, 95%-CI [0.00, 1.00]) and P2 (F (1, 25) = 5.74, p = 0.024, η2G = 0.046,677

95%-CI [0.00, 1.00]), the spectral component appeared earlier than the intensity one678

(N1: diff = 0.013 s, t(25) = 3.315, p = 0.003, d = 0.63, 95%-CI [0.25, 1.02]; P2:679

diff = 0.018 s, t(25) = 2.396, p = 0.024, d = 0.43, 95%-CI [0.07, 0.79]). Taken together,680

attention mainly affected P2 amplitude biases and this effect appeared strongest for681

intensity cues. The bias again emerged pre-attentively, with a slight difference between682

hemispheres for the spectral cue type.683

Newborn listeners: Looming bias elicited only by intensity cues684

After verifying the pre-attentive nature of the looming bias for both considered cues685

in the adult listener pool, we exposed 71 healthy full-term neonates in deep sleep stage686

to the same stimuli. Apart from feasibility reasons75;76;36, the deep sleep state ensured687

no attentive mechanisms were active.688

In line with the procedure on our adult participants, we first performed a topo-689

graphical analysis of the neural distribution at the scalp level. The cluster-based690

permutation test identified significant looming bias only for the intensity condition691

(clusterstat = 7.453 ∗ 103, p = 0.006, d = 0.747, 95%-CI [0.434, 1.089]; Fig. 6d).692

Emerging at 270 ms after the change and initially lateralised to the right, the cluster693

subsequently moved more frontally, finally solidifying in the frontocentral leads. The694

looming bias itself was found to intensify with elapsing time.695

Based on the emerging topographical distribution, we extracted the average EEG696

time courses from an electrode cluster located in the frontocentral region of the scalp697

(see Newborn EEG analysis). The cluster activations averaged across looming and698

receding sounds appeared rather shallow until a rapid increase at around 400−500ms699

after the event(Fig. 6a). The divergence between the looming and receding neural700

responses, representing the bias, depended on cue type (Fig. 6b and c). Consistent with701

the topographic analysis, the intensity looming bias first emerged 270 ms after the702

change event. Responses to looming and receding sounds drifted apart with progressing703

time, denoting a gradual intensification of the bias’ amplitude (Fig. 6b). Contrary to704

that, neural looming and receding responses closely followed each other in the spectral705
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condition, displaying no statistically significant evidence for difference in their time706

courses (Fig. 6c).707

To test for position-specific effects, we additionally analysed the event-related708

potentials locked to stimulus onset. Cluster-based permutation tests yielded no sig-709

nificant clusters. A 2x2x2 Bayesian repeated-measures ANOVA with the factors cue710

type (spectral or intensity) and position (near or far) was performed. Bayes factor for711

exclusion (analysis of effects) for all factors as well as their interaction yielded no reli-712

able evidence of a positional bias (cue type: BFexcl = 4.142; position: BFexcl = 4.701;713

cue type x position: BFexcl = 4.851). As for the adults, there was no credible evidence714

for a difference between near and far sounds for either cue type (Fig. 7), indicating715

that the observed bias induced by intensity cues is specific to the change event.716

Fig. 7 Newborns’ (N=71) onset-evoked scalp potentials at the defined electrode cluster reveal no
auditory position bias for any of the considered starting positions. a) Onset potentials averaged across
trials of near and far positions. b) Near versus far neural responses for the onset-locked intensity
condition. c) Near versus far neural responses for the onset-locked spectral condition. Shaded areas
denote the standard errors of the means.

Using template anatomical data for newborns and adjusted electrode locations, we717

inferred the generators of the recorded activity on the cortical surface (Fig. 8a). As718

for the adults, the change events evoked neural activity strongly focused on the pos-719

terior regions of the superior temporal gyri of both hemispheres, centered around the720

region of the HG. The change events also evoked activity in more distributed cortices721

of the newborns, including the superior and inferior temporal gyrus and occipital area.722

These observed activations might be attributed to object movement initiating rapid723

multisensory associative cortical processes, or the role of sleep in newborns’ sensorimo-724

tor development77. We localised the HG bilaterally and extracted the corresponding725

cortical source responses.726

Change-evoked neural source responses to looming versus receding stimuli were727

compared via cluster-based permutation statistics (Fig. 8b and c). Both cortices exhib-728

ited a response closely following the one found at the scalp level (Fig. 6b and c).729

Congruently, the HG time series in each hemisphere revealed a significant looming730

bias for the intensity condition, with the cluster appearing earlier for the left (230731

ms, clusterstat = 8.46 ∗ 103, p = 0.006, d = 3.721, 95%-CI [3.390, 4.084]) than for732
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the right hemisphere (300 ms, clusterstat = 6.298 ∗ 103, p = 0.018, d = 4.772, 95%-733

CI [4.364, 5.225]; Fig. 6b). In agreement with the scalp-level analysis , no statistically734

significant evidence of looming results were found for the spectral condition (Fig. 8c).735

We further investigated the apparent lack of spectrally induced biases by applying736

Bayes factor hypothesis testing of evidence of absence78. A 2 x 2 repeated-measures737

ANOVA with the factors motion (looming or receding) and hemisphere (left or right)738

was performed. Bayes factor for exclusion (analysis of effects) yielded no credible739

evidence for a spectral bias, neither for the factor motion (BFexcl = 3.15) nor for its740

interaction with hemisphere (BFexcl = 5.64), corroborating the irrelevance of spectral741

looms to the HG of newborns.742

Discussion743

In this study, we aimed to disentangle the inborn and learned aspects of the auditory744

looming bias. To this end, we analysed the cortical responses from human adults and745

newborns to sounds perceptually moving along the distance dimension. We found the746

emergence of auditory looming bias in both age groups, yet it appeared to be processed747

differently depending on cue type. In adults, cue changes elicited neural biases in the748

HG as early as 50 ms after the change event and those were enhanced yet delayed749

for intensity compared to spectral cues. On the contrary, newborns demonstrated the750

bias only for intensity cues, beginning as early as 230 ms after the change event.751

This contrast between prenatally accessible intensity cues and postpartum changing752

spectral cues supports the idea that the looming bias comprises both innate and753

learned components.754

Related work755

In adult participants, neural biases emerged stronger yet later in the intensity com-756

pared to the spectral condition. The relatively stronger responses align with the higher757

drift rates found behaviourally in the intensity condition. Evaluating spectral spa-758

tial cues is considered to require more complex processing79 and create more subtle759

distance percepts28;22. Intensity cues should thus provide a more reliable perceptual760

read-out than spectral cues, especially under task-relevant conditions; the higher atten-761

tional modulation of neural biases induced by intensity cues is also consistent with762

this expectation. The relative delay of the intensity responses compared to the spec-763

tral ones may seem at first paradoxical, given that, behaviorally, intensity cues led to764

faster evidence accumulation. The reduced latency of neural biases in the spectral case765

may be due to mismatches in low-level auditory spatial tuning induced specifically by766

the transitions from native to flat spectral shapes. Thinking of this as a cue impover-767

ishment connects well to previous investigations of spatial attention, which also found768

processing latencies, particularly around 50ms to be affected by impoverished auditory769

spatial cues80.770

Newborns exhibited the bias exclusively with the intensity cues (see Supplemen-771

tary Note 1: Onset analyses). Both our analyses methods, cluster-based permutation772

and Bayes factor hypothesis testing, provided no credible evidence for the presence of773

spectral looming bias in the newborn brain. In spite of the modifications of the sound774
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characteristics taking place in utero during development, frequencies in the range of775

100− 1000 Hz reach the fetus largely unchanged81;25, enabling the processing of spec-776

tral acoustic information at least for this low-frequency range. Yet the environment777

in utero, comprising liquid and essentially a low-pass filter for sounds, differs substan-778

tially from the one a newborn is postnatally exposed to. Especially given that our779

modifications affected frequencies beyond 1000 Hz, they have likely undergone essential780

distortion. Offering limited prenatal experience in the new environment, the absence781

of a spectral bias postnatally could align with the necessity of spatial associations for782

the spectral cues to be understood. Along these lines, early behavioral studies suggest783

that infants gradually acquire them during the first 18 months of their life82;83.784

We found early instances of auditory looming bias bilaterally at the level of the785

HG across attentional states and ages, while adults exhibited biases much earlier than786

newborns. This age-dependency by far exceeds expectations based on regular mat-787

uration speed-ups84 and may suggest that adults establish more effective processes,788

specifically targeted towards detecting looming sounds. The particularly early biases789

in adults occurred more consistently for the right as compared to the left HG, an790

outcome potentially related to the right-hemispheric dominance of auditory spatial791

processing85;86.792

The HG lies on the superior surface of the temporal lobe and functionally houses793

the primary auditory cortex (Brodmann areas 41 and 42). As defined by the Desikan-794

Killiany atlas67, where it is denoted as transverse temporal gyrus, it comprises the795

area between the rostral extent of the transverse temporal sulcus and the caudal por-796

tion of the insular cortex. The lateral fissure and the superior temporal gyrus are797

the medial and lateral boundaries, respectively67. The essential role of the auditory798

cortex emerges through previous work on the neural circuits of threat detection3,799

suggesting that corticofugal projections from the auditory cortex to the inferior col-800

liculus and lateral amygdala trigger defensive behavior. Silencing the auditory cortex801

in mice generally impedes auditory fear conditioning87 and, in particular, their freeze802

and flight behavior in response to looming sounds14. Recordings in awake non-human803

primates also found neural populations within the primary88 or secondary13 audi-804

tory cortices to be biased in the same direction. Neuroimaging studies with human805

participants implicated regions such as the planum temporale and further uncovered806

widespread cortical networks that reflect the auditory looming bias15;16;17. Previous807

analyses suggest bottom-up directed connectivities from primary auditory cortex to808

prefrontal areas26, and our findings in sleeping newborns and inattentive adults fur-809

ther hint in this direction. Yet additional studies are needed to shed light on the nature810

and function of those networks beyond corticofugal projections.811

Limitations812

Despite corroborative evidence, our findings should be conditional to cautious inter-813

pretation. The presence of intensity bias, the most salient cue type, in the newborn814

brain is a finding well in line with it having innate components potentially stemming815

from evolution. It is a possibility, though, that to some degree that bias results from816

learning during intrauterine sensory development89. Although not found in our set-817

ting, the presence of spectral associations in the newborns’ brains cannot be entirely818
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refuted. The experimental set-up for the newborns inevitably differs methodologically819

from the one for the adults, potentially obscuring the result.820

A possible reason for not finding an existing effect concerns the newborns’ state821

of consciousness. We compared passively listening adults to sleeping newborns, a822

standard procedure in cross-age auditory research75;76;36. Although it has been demon-823

strated that awake and sleeping newborns show identical neural responses to sounds824

and changes in sound properties90, the generalization of this to cue-specific looming825

sensation may come with some uncertainty. The response biases in adults were already826

diminished in the passive spectral condition, which might be a precursor for an even827

smaller effect in the corresponding newborn case, rendering its detection particularly828

challenging.829

Another potential cause for the lack of finding biases induced by spectral cues con-830

cerns the sound characteristics. In previous newborn studies, sounds were presented831

using loudspeakers in a sound-attenuating chamber. We presented the stimuli via head-832

phones instead, and simulated the acoustic transmission properties from a loudspeaker833

to the ear canal by individualized spectral filtering91. While for our adult listeners834

acoustical measurements were feasible to fully individualize, we had to rely on a partial835

individualization procedure based on anthropometric measurements46 for the new-836

borns. To further reduce the risk of insufficient HRTF individualization, we presented837

our stimuli from extremely lateral directions, where the HRTFs from the perceptually838

predominant ipsilateral side are among the least individual ones92. Nevertheless, there839

inevitably were inter-individual differences in the fit of the approximated HRTFs to840

the true ones. If newborns were sensitive to the spectral cues provided by their true841

HRTFs and were hindered solely due to insufficient HRTF individualization, the vari-842

ance in the goodness of fit of the HRTFs should be reflected in the variance of the843

measured neural responses to the spectral condition. The variance we observed in the844

spectral condition is, however, comparable to the one emerging in the intensity one.845

Altogether, these considerations provide little evidence for acoustic inconsistencies846

being the underlying cause.847

Another methodological downgrade for the newborn group concerns the use of848

template solutions for the inference of EEG source activity (brain anatomy and elec-849

trode locations). This lack of individualization degrades the EEG source localisation850

accuracy66 but does not affect the results on the scalp level. Since results were con-851

sistent across the scalp and source level, this methodological difference seems to play852

a minor role. Despite all taken measures and the more than twofold sample size of the853

newborn group, the possibility of them not sufficiently counterbalancing the imposed854

methodological limitations has to be acknowledged.855

Across age groups, the use of EEG itself might have been a factor influencing856

the accuracy of our outcomes. EEG source localisation relies on assumptions on the857

spread of activity, as the layers of bone and tissue between the cortical surface and the858

recording electrodes are inaccessible. As such, the process suffers from imprecisions in859

the allocation of activity to its cortical generators. Due to its large inter-participant860

variability, auditory cortex localisation is particularly difficult18 in that respect. We861

made use of individual anatomical data and results from previous investigations66 to862

infer activity from HG, attempting to limit such imprecisions to the most feasible863
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degree. The analyzed inferred activity resembles the sought auditory cortex one, yet864

there could also be spill-over from secondary auditory regions. Future investigations865

with more fine-grained parcellations (e.g., TASH93) may give better insights on the866

dissociation of the two. Studies combining EEG with spatially more precise methods,867

such as fMRI and MEG, could, moreover, help better study the cortical generators868

involved in the bias. This study placed the target on the HG, aiming to investigate869

auditory cortical signatures of the looming bias; yet further whole-brain connectivity870

studies might aid towards uncovering the larger network at play, including the multiple871

ROIs previously shown to be implicated in the biased perception of auditory looms.872

The nature of auditory looms can be manifold. The implemented stimuli used in873

the present study comprise transition ramps in the order of 10 ms. The ecological874

validity of using a 10 ms duration to simulate looming or receding sounds depends875

on the natural soundscape and the types of events or objects being simulated. In876

certain real-world scenarios, such rapid changes may not be as common or provide877

sufficient information for accurate perceptual judgments. In our experimental setting,878

however, keeping the transition phase short was not only crucial for a good temporal879

isolation of neural processes but also to maintain consistency and comparability with a880

highly relevant previous studies8;26. This ensured that the looming bias can be reliably881

elicited, particularly when utilizing the complementary cue type of spectral shapes.882

Abrupt increases in sound intensity may also be judged as salient onset events94883

rather than motion events. While this confounds the interpretation of biases found for884

the intensity condition, it is less clear for the spectral condition. On the one hand,885

understanding of the spectral cues is expected to rely on spatial associations79;95.886

Acquiring those associations is therefore thought to facilitate the bias, purely from a887

spatial point of view and, by stimulus design, without intensity confounds. Neverthe-888

less, associative learning could be possible, meaning that the significance of one cue889

gets learned purely based on understanding of another. Although isolated in our study890

design, intensity and spectral cues do not appear as such in nature, therefore obscuring891

the precise interdependencies. Associative learning may also explain why full motion892

cues are the most efficient in facilitating the warning mechanism of the looming bias7.893

To further investigate this question, it would be interesting to study the possibility894

of inducing looming bias with novel spectral cues. Those should have been acquired895

through directional localisation training and with stimulus intensity being roved to896

rule out intensity associations96.897

Conclusions898

Taken together, we found that both human adults and newborns exhibit the auditory899

looming bias at the level of the HG during inattentive listening. The primary audi-900

tory cortex, a functional region within the HG, has previously been associated with901

the looming bias. Our results thus corroborate the notion that the auditory looming902

bias reflects an early, pre-attentive warning mechanism, potentially originating from903

activity within the primary auditory cortex.904

However, the presence of this bias appears to be contingent on cue type, a find-905

ing consistent with the requirement for prior cue exposure. The auditory looming bias906
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seems therefore to be partially innate, encoded through the evolutionary history of907

species, without the need for previous threat experience. Nevertheless, it remains flexi-908

ble enough to effectively integrate new spatial cues acquired through lifelong exposure.909

How this cue universality is achieved remains to be elucidated.910

Data availability. Data are available under https://osf.io/4gdy2/97.911

Code availability. Experimental paradigm and analysis scripts are available under912

https://osf.io/4gdy2/97.913
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Fig. 3 Adults’ change-evoked scalp potentials reveal auditory looming bias across atten-
tional states and cue types. a) Potentials evoked at the vertex electrode (Cz) on average across
looming and receding trials (looming/2 + receding/2). Shaded areas denote the standard errors of
the means. b) Difference waveforms (looming–receding) at the vertex electrode. c) Extracted peak
amplitude values of the N1 and P2 components. Error bars represent 95% confidence intervals. Aster-
isks indicate significant main effects (p < 0.05) per component. d) Extracted peak latency values of
the N1 and P2 components. e) Scalp topographies and duration of clusters with significant looming
bias, defined as the difference between looming and receding trials. Horizontal lines denote the dura-
tions of the significant clusters and are tagged with numbers at the point of maximum manifestation.
N=28.
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Fig. 6 Change-evoked scalp potentials from newborns reveal auditory looming bias only
for the intensity condition. a) Responses at the frontocentral electrode cluster for different cue
types averaged across looming and receding trials. Shaded areas denote the standard errors of the
means. b) Looming versus receding neural responses for the change-locked intensity cue condition.
The grey bar denotes the duration of the significant looming bias. c) Looming versus receding neural
responses for the change-locked spectral cue condition. d) Topographic analysis of looming bias
elicited by intensity cues. N=71.
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Fig. 8 Change-evoked HG activity in newborns reveals auditory looming bias only for
the intensity condition. a) Brainmaps pooled across conditions and averaged within the time
interval 250− 300 ms. b-c) Activity evoked by looming vs. receding sounds in left (left panels) and
right (right panels) HG based on intensity (b) and spectral (c) cues. Grey areas denote the duration
of significant temporal clusters. Shaded areas denote the standard errors of the means. N=71.
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