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Abstract16

While sounds of approaching objects are generally more salient than those of17

receding ones, the traditional association of this auditory looming bias with18

threat perception is subject to debate. Differences between looming and receding19

sounds may also be learned through non-threatening multisensory information,20

or influenced by confounding stimulus characteristics. To investigate, we analyzed21

corticocortical connectivity patterns from electroencephalography, examining the22

preferential processing of looming sounds under different attentional states. To23

simulate rapid distance changes we used complementary distance cues, previously24

studied in the looming bias literature. Notably, despite the absence of conscious25

threat perception, we observed crucial involvement of frontal cortical regions26

typically associated with threat and fear responses. Our findings suggest an27

underlying bias towards the ventral ’what’ stream over the dorsal ’where’ stream28

in auditory information processing, even when the participants’ task was solely29

focused on the discrimination of movement direction. These results support the30

idea, that the perceptual bias towards looming sounds reflects an auditory threat31

detection mechanism, while offering insights into the neural function involved in32

processing ecologically relevant environmental cues.33

Keywords: auditory looming bias, distance motion perception, brain connectivity,34

fear, hazard protection, dual pathway model35



1 Introduction36

If a car is approaching from a distance, its timely detection and avoidance are essential37

to our survival. It is presumably to improve warning capacity, that approaching stimuli38

are more salient than receding ones. This perceptual asymmetry, often referred to as39

the auditory looming bias, has been found present across species [1–5] and ages [6–40

9], making it a rather universal trait. As an effective warning mechanism, the looming41

bias should have the capacity to readily capture attention and be rather universal42

across cue types. Corroborating this hypothesis, signatures of the bias have indeed43

been found across attentional states and auditory distance cue types; they were present44

already at the level of Heschl’s gyrus (HG), housing the primary auditory cortex [10].45

Yet the bias’ relationship to threat detection remained a hypothesis, and discrepancies46

in behavioral performance, timing, and attentional amplification, suggest that there47

are differences in cortical processing depending on these factors.48

The notion of stimulus-specificity has frequently been put forth with regards to49

the selective advantage of the looming bias, and its function as a warning mechanism50

for organisms facing potential collisions with sound sources. It tends to be observed51

more consistently in response to stimuli with a natural overtone structure, in contrast52

to Gaussian white noise stimuli, which sound arguably more artificial [4, 9, 11].53

However, studies have also demonstrated looming biases in response to noise stimuli54

when accounting for the natural acoustic filtering properties of listeners [12, 13]. This55

suggests that the absence of natural spatial cues, rather than the source’s identity,56

may be responsible for the failure to elicit the bias in certain cases. Additionally, some57

investigations into the looming bias have employed auditory distance changes as short58

as 10ms [10, 12, 13], prompting questions about the necessary identity and ecological59

validity required to evoke this effect.60

From a neuroimaging perspective, increased amygdala activation in response to61

slowly rising sound intensities has been an important argument for the bias’ warning62

function [14]. Apart from Heschl’s gyrus and the amygdala, functional magnetic reso-63

nance imaging (fMRI) has highlighted the involvement of the temporal plane, superior64

temporal sulcus (STS), prefrontal cortex (PFC), and inferior parietal lobe (IPL) in the65

preferential processing of looming sounds [14, 15]. In general, auditory stimuli have66

been hypothesized to follow two parallel cortical processing streams: one following a67

ventral and the other a dorsal path [16]. Originally stemming from visual research,68

the dorsal pathway is associated with spatial perception (”where”), while the ven-69

tral stream with object identification (”what”) [16, 17]. The inferior parietal lobe, as70

part of the dorsal auditory pathway, is thought to play a crucial role in spatial hear-71

ing [18, 19] and sound motion processing in particular [20], whereas superior temporal72

sulcus and prefrontal cortex belong to the ventral pathway. Based on these findings,73

the looming bias circuit emerges as an extended distributed cortical network.74

Besides the mere activation increase induced by looming sounds, one crucial aspect75

is the way in which the involved regions are at interplay. This question can be addressed76

through functional connectivity investigations [21]; namely computational methods77

exploring the information exchange among regions of interest (ROIs). Unlike structural78

connectivity, which describes anatomical connections linking sets of neural elements,79



functional connectivity is dynamic in nature. It represents changes in statistical inter-80

dependencies between or among brain regions, within a specific time interval and81

connected to an event of interest. The observed brain regions that are found to con-82

tribute the most with regards to connectivity, relative to the others or the combinations83

thereof, are defined as functional hubs. Those are also dynamic and may deviate from84

an anatomical definition, as they can be a part of different functional clusters [22].85

Findings stemming from available connectivity analyses of the auditory looming bias86

circuit are inconclusive: a study based on intensity ramps argues that top-down direc-87

tional causal influence from prefrontal cortex to Heschl’s gyrus enhances processing88

of looming versus receding sounds [23], while prior investigations on spectral stimuli89

argue for a bottom-up, temporofrontal connectivity [13].90

Functional connectivity methods employed in previous research focus on a bidi-91

rectional analysis process, albeit relying on a small preselection of brain regions92

(Granger [24], Phase Transfer Entropy [25]). Although insightful regarding the inter-93

play of the considered ROI pairs, further methods may offer an approach that is closer94

to a network structure. They are nevertheless limited by either the number of regions95

that can be considered (conditional Granger Causality [26]), the dimensionality (mul-96

tivariate Granger [27]) or the amount of constraints enforced by parameters of a model97

(e.g., Dynamic Causal Modeling [28]). Contrary to that, recent frameworks offer both98

a holistic as well as data-driven approach [29, 30]. They provide the possibility to99

investigate the whole brain on different levels, without the necessity of a predefined100

set of ROIs or network structure parameters. Of those, the INSIDEOUT approach [29]101

relies on the observation, that the environment drives hierarchically lower, sensory102

regions, stronger than hierarchically higher ones. A system in equilibrium has seam-103

less transitions between different states; thermodynamically, it is reversible in time.104

Should the system get driven out of equilibrium, the transitions between states become105

non-reversible and an arrow of time emerges. Measuring the effects of the extrin-106

sic environment on the intrinsic brain dynamics through the non-reversibility of the107

system, here the brain, can therefore help uncover variations in brain states under dif-108

ferent conditions. The framework of normalized directed transfer entropy (NDTE) [30],109

contrarily, works on a mesoscopic level: By considering the interconnectivity of all110

defined brain regions, it draws assumptions about the most essential contributors, or111

functional hubs, of the underlying networks.112

In the current study, we investigate the cortical connectivity network underlying113

the auditory looming bias under the individual factors of cue type and attention, in114

search for overlapping patterns along spatial and/or identity-related cortical process-115

ing streams. Through the high temporal resolution of electroencephalography (EEG)116

in combination with recently proposed, data-driven approaches for connectivity anal-117

yses, we investigate the brain at different levels of granularity [29, 30]: First as a118

whole, and subsequently in search for the functional hubs that act as essential contrib-119

utors in the looming network. High spatial resolution is achieved by complementing120

source localisation of high-density EEG with individual brain anatomies and electrode121

locations [31]. The present analyses are based on prior collected data, studying the122

auditory looming bias at the level of HG under the aforementioned factors of atten-123

tion and cue type [10]. In that paradigm (Fig. 1), participants listened to broadband124



harmonic tones that rapidly changed in their simulated distance from the listener and125

thereby elicited a looming or receding percept. Distance cues comprised either overall126

sound intensity or spectral shape changes. Listeners were first passively exposed to127

the stimuli while watching a silent subtitled movie and later had to discriminate the128

sonic motion direction. We find that there is to be higher sensitivity for intensity stim-129

uli, while different main hubs, traditionally connected to threat and fear perception,130

emerge based on the factors considered.131

Fig. 1: Experimental design. A) Looming and receding percepts created through
simulated transition between two sounds of different intensities (top, blue) or spectral
shapes (bottom, red). Thick arrows represent 50% transition probability for motion
trials (dark = looming; light = receding). B) Sound intensity over time (top panel)
and magnitude spectrum (bottom panel) of all implemented stimuli. Figure adapted
from [10].

2 Results132

For the present connectivity investigations we extracted the source-localized EEG time133

series of all cortical regions, as defined by the Desikan-Killiany parcellation [32]. We134

considered the time interval between 0 and 300 ms relative to the event of distance135

change. This choice was made based on the finding, that this time window has shown136

significant biases evoked in HG in previous investigations [10].137



2.1 Intensity looms induce stronger non-reversibility in138

cortical processing139

INSIDEOUT reflects how the environment (extrinsic, outside) affects the dynamics140

and equilibrium of the underlying brain state (intrinsic, inside) [29], by measuring the141

non-reversibility of a considered system.142

We implemented this framework by accounting for the set of all ROIs of the con-143

sidered parcellation, hence the cortex as a whole (Sec. 4.4.1). Higher non-reversibility144

is thus understood as a quantification of the amount of change in causal interactions145

of the brain under each considered condition.146

Fig. 2: Effects of cue type and movement direction on the temporal non-reversibility
of cortical processing, as calculated by the INSIDEOUT framework. Points and bars
represent the means and their standard errors within each violin plot. Asterisks indi-
cate statistical significance (p < 0.05).

Figure 2 shows the distributions of non-reversibility measures obtained for every147

considered condition. An ANOVA with the factors of attention, cue type and motion148

direction revealed the latter to be a significant factor (F1,27 = 8.34, η2p = 0.24, p =149

0.008), as well as its interaction with the cue type (F1,27 = 5.11, η2p = 0.16, p = 0.032).150

To further investigate this interaction, we performed a separate ANOVA for each cue151

type and adjusted the p-values for multiple comparisons using Bonferroni correction.152

For intensity, looming sounds were found to elicit higher non-reversibility than receding153

sounds (F1,27 = 9.17, η2p = 0.25, p = 0.011). No significant factors or interactions154

thereof appeared for the spectral condition. Hence, looming stimuli appeared to disrupt155

the intrinsic equilibrium more than receding ones, in particular when they are based156

on intensity changes.157



2.2 Connectivity hubs relevant to the auditory looming bias158

To better understand the dependencies, we then applied the NDTE framework, as it159

offers a more granular view on the interacting brain regions. Following the procedure160

suggested in [30], we considered each ROI’s connection to every other ROI in the161

cortical parcellation. The connectivity between each pair of regions was calculated162

on the actual data, and its significance assessed through a distribution of surrogate163

data stemming from the same ROI-pair. Aggregation of the connectivity information164

across subjects allowed for the construction of connectivity hubs, namely regions, or165

sets thereof, that are, as a whole, more connected compared to any other considered166

set comprising the same number of ROIs. We performed a connectivity analysis on167

the bias data by considering the factors of attention and cue type.168

The two quantities of essence in this framework are termed inflow (Gin in [30])169

and outflow (Gout in [30]); they respectively represent the connectivity incoming to or170

outflowing from a ROI. If a set of ROIs is considered as a network, inflow is the sum171

of all incoming connectivity across all its constituent ROIs. The respective holds for172

the outflow.173

Fig. 3: Major inflow and outflow hubs of looming bias identified per considered con-
dition. Fpole (magenta) is activated by both active intensity and spectral. Fpole -
frontal pole, IFGtriang - pars triangularis, STG - superior temporal gyrus, PreCG -
precentral gyrus, IFGoper - pars opercularis, IG - insular gyrus, BanksSTS - banks of
the superior temporal sulcus, HG - Heschl’s gyrus.

We determined the major inflow and outflow hubs per condition by following the174

concept and search procedure of functional rich clubs (Sec. 4.4.2; FRICs in [30]). Fol-175

lowing the procedure for their definition based on the inflow, we respectively defined176

the major hubs based on the connectivity outflow (Fig. 3, Sec. 4.4.2). As demon-177

strated in figure 3A, the major inflow was attributed to one region, except for the178

active intensity condition. The ROIs receiving the most inflow spanned over tempo-179

ral regions (STG), frontal regions (pars opercularis - IFGoper, frontal pole - Fpole),180



and both hemispheres. Across both active conditions, only the frontal pole emerged181

as a crucial inflow hub for looming bias. In the passive conditions, the relevant inflow182

hubs comprised the right precentral gyrus (PreCG) for intensity and the left pars183

triangularis (IFGtriang) for spectral stimuli. Regarding the outflow hubs, one region184

emerged per condition and all regions were located in the left hemisphere. Apart from185

the active intensity condition, where the insular gyrus (IG) was identified as the main186

hub, temporal regions were identified for the remaining cases: superior temporal gyrus187

(STG) for active spectral, transverse temporal gyrus (Heschl’s Gyrus, HG) for pas-188

sive intensity, and the banks of the superior temporal sulcus (BanksSTS) for passive189

spectral.190
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Fig. 4: Detailed connectivity for major inflow and outflow hubs identified per condi-
tion. Displayed connections correspond to the top 30% of connectivity strength per
condition. Color bars were adjusted accordingly and normalized connectivity values
were scaled up by a factor of 100.

We further extracted the pattern of hub connections that emerged, separately for191

inflow and outflow connectivity in each considered condition (Fig. 4). On a large scale,192

the inflow hubs, localized to the frontal cortices (Fpole, IFG, PreCG), dominantly193

received information from more distant regions of the sensory temporal regions such194

as the superior temporal gyrus, Heschl’s gyrus or inferior temporal cortices. In con-195

trast, the outflow hubs, localized to the temporal regions (IG, STG, HG, STS), tended196

to send information to more local areas within the temporal cortex. All those con-197

nections occurred mainly within hemisphere, reflecting rather weak inter-hemispheric198

connections to and from the hubs.199

3 Discussion200

Looming sounds exhibit remarkable salience, consistently eliciting a perceptual bias201

compared to equivalent receding sounds. This bias is commonly hypothesized to signify202



a mechanism for threat detection and hazard protection. In this study, we employed203

two data-driven, state-of-the-art functional connectivity approaches, to examine cor-204

tical responses to simulations of rapid changes in auditory distance. We examined the205

responses during both passive and active listening, and while utilizing either inten-206

sity or spectral cues. Analyzing macroscopic brain states, temporal non-reversibility207

tests revealed a more pronounced impact of looming sounds on the overall functional208

connectivity when intensity was employed to simulate motion in distance. Taking a209

more granular approach, we identified functional connectivity hubs for each condition,210

shedding light on the intricate neural networks underlying these perceptual processes.211

Throughout our conditions, frontal regions emerged as the main inflow hubs212

(frontal pole, IFG including the pars opercularis, pars triangularis also known as213

Broca’s area-BA45), and temporal regions as the major outflow hubs (primary and214

secondary auditory cortices such as the superior temporal gyrus, transverse tempo-215

ral gyrus including the PAC, banks STS). Prior studies have argued regarding the216

directionality of the connectivity in the looming bias, with results divided between217

bottom-up processing [13] or a top-down intervention [23]. The here-identified hubs218

support the bottom-up notion, as temporal regions act more as sources (outflow hubs)219

and frontal regions as receivers (inflow hubs) in response to looming sounds. Moreover,220

those hubs mostly appear to belong to the ventral auditory pathway. As seen in the221

case of passive intensity, the motor cortex is additionally present, while no hubs appear222

in our findings that could be clearly associated with the dorsal auditory pathway. This223

result is intriguing, as it suggests that, in the considered context, priority is given to224

recognizing and identifying the auditory sound source (”what”) rather than its loca-225

tion (”where”); even though listeners were solving a spatial auditory task during the226

active listening part of their study participation. The to be expected high involvement227

of the dorsal pathway in spatial perception might have been canceled out by the bias228

calculation (difference between looming and receding). The importance of source iden-229

tity on the elicitation of auditory looming bias has previously also been demonstrated230

by comparisons between different types of source stimuli: tones elicited stronger biases231

than noise [4, 5, 9, 33, 34]. The here identified connectivity hubs seem to reflect the232

crucial role of source identity in the manifestation of the auditory looming bias.233

3.1 Emerging looming bias hubs relate to fear responses234

The analysis of sound source identity is governed by cortical hubs that are congru-235

ent to various literature findings in the context of threat and fear. Among the frontal236

regions, the anterior part of the frontal cortex (Fpole) emerged as the major inflow237

hub in both active conditions, which is in agreement with its recognized function for238

executive cognitive processing and action selection [35, 36]. Other auditory studies239

also demonstrated its involvement in the context of threatening sentences and emo-240

tionally salient pictures [37]. Apart from the frontal pole, parts of the inferior frontal241

gyrus appear as essential in facilitating the bias: the right pars orbitalis for the active242

intensity and left pars triangularis for passive spectral. More generally, studies of visu-243

ally presented threat-related words have reported activation of the left inferior frontal244

gyrus [37, 38]. Inferior frontal gyrus has additionally been activated in the context245



of fear conditioning [39] and the downregulation of psychophysiological reactions to246

threat [40].247

The information received by the major inflow hubs primarily appeared as coming248

from primary and secondary auditory cortical regions on the temporal lobe. Concor-249

dantly, the main outflow hubs we identified were localized in the temporal areas. Being250

an auditory task, areas such as the PAC may be especially involved; yet previous251

research has also implicated it in threatening sound paradigms [37]. Superior tempo-252

ral ROIs, emerging in our considered active (attentive) conditions, have additionally253

been connected to attention linked to threatening voices [41].254

In contrast to mainly temporal regions as outflow hubs, the insula appeared as255

a key outflow node in the intensity stimuli. As a ROI, it has been associated with256

fear and anxiety conditioning [37, 39, 42], while animal studies have demonstrated its257

implication in fear or extinction memory [43]. Intensity stimuli have behaviorally and258

neurally emerged as more salient than their spectral counterparts, in both adult and259

newborn listeners [10]. Implication of the insula only in the perception of intensity260

stimuli might act as a contributor of that manifestation.261

Finally, frontotemporal activations have generally been linked to the basolateral262

amygdala (BLA), an essential hub of the limbic system, in the context of automatic263

fear detection [44]. The amygdala itself has, in turn, been further implicated in the264

looming perception [14] in a warning role. As we conducted our study with the use of265

EEG, subcortical activations, consequently also the amygdala, are either inaccessible266

or unreliable; the direct verification of the BLA-frontotemporal link in the context of267

the bias can thus not be made through our findings. Yet the emerging frontal and tem-268

poral connectivity hubs may be a manifestation of the BLA-frontotemporal exchange,269

congruently to previous findings: Invasive studies on animals have specifically impli-270

cated the medial prefrontal cortex and BLA in the discrimination between harmful271

and safe stimuli, and highlighted that the corticocortical dialogue between sensory and272

prefrontal areas is essential for fear-discrimination processes [45]. Taken together, the273

functional relevance of the major hubs we identified along the ventral auditory path-274

way suggests that, regardless of cue type, looming sounds elicit the perceptual bias by275

rapidly recognizing the sound as a potential threat.276

3.2 Methodology and limitations277

In the current study, we utilized direct (NDTE) and indirect (INSIDEOUT) connec-278

tivity metrics in order to obtain an image of the bias-related processes on the cortical279

surface. Depending on the method at hand, investigations can be done at different280

levels of granularity.281

INSIDEOUT captures the breaking of causal connections through non-reversibility282

and the arrow of time in order to measure brain connectivity. Compared to other283

approaches, it has the big advantage that no underlying constraints (e.g., ROIs or284

networks) or models (e.g., directionality or node assumptions) are necessary for its285

implementation. It can additionally give a coarse representation of the different brain286

states based on the whole cortex in a significantly less computationally complex and287

time-consuming manner than conventional approaches would demand. In terms of288

non-reversibility, the looming bias was found mainly for the intensity stimuli. Broadly289



considered in looming studies, intensity stimuli have generally appeared more salient290

than spectral ones; the latter seem to be more complex in their understanding and cog-291

nitively processed in a much more subtle manner [46–48]. As INSIDEOUT is reflective292

of subjective conscious awareness [29], our result corroborates the difference in percep-293

tion depending on cue type. The greater intervention of intensity stimuli, in terms of294

disruption in causal interactions, highlights their salience as already emerged through295

prior behavioral as well as neural studies [6, 7, 9, 10, 12, 14, 15, 23, 49, 50]. The effects296

we found from the INSIDEOUT framework, although present, are small in size. This297

is likely due to our highly specific paradigm (auditory looming bias), rendering the298

brain states only subtly, but not fundamentally, different. Despite this highly specific299

approach, though, INSIDEOUT still revealed significant effects in line with previous300

findings.301

Contrary to the coarse granularity offered by INSIDEOUT, the fine-grained302

method of NDTE yielded insights into which regions are the main hubs in manifest-303

ing the looming bias, and does so in a data-driven way. By considering all ROIs of a304

given parcellation, the cross-connectivity is calculated. By, then, ranking regions based305

on their outflow (sources) or inflow (receivers) and iteratively comparing networks306

(Sec. 4.4.2), conclusions about ROIs, or networks thereof, with the most essential con-307

tribution per considered condition emerge. It should be noted that the timescale of308

all effects is defined by the calculated minimum of the autocorrelation function. As309

shown in previous research, this is a solid approach to our investigations [29, 30]. In a310

more ideal way, though, and although computationally significantly more costly, this311

parameter could be set individually for each considered time series.312

In our investigation we adhered to the rather coarse parcellation of the Desikan-313

Killiany atlas [32]. Our selection relies on both aiming to compare outcomes to prior314

literature [13, 23] as well as reduce complexity, especially in the case of NDTE calcu-315

lations. Finer parcellations, such as the one from Destrieux [51], could offer different316

insights depending on the question at hand; yet they come with higher amount of317

regions and therefore complexity. Finer parcellations may additionally be more prone318

to wrongful activity attribution if the precision of the source localization is insufficient.319

Although we used individualised anatomical information to aid the performed EEG320

source localization [31], spatial imprecisions are inevitable. An example thereof is the321

depth-weighting done by algorithms for sources that are intricately placed on the cor-322

tex. Additionally, should activity arise from subcortical surfaces at greater distances323

from the sensors, EEG may wrongfully attribute the recorded activity. Our results are324

in good agreement with relevant literature, yet different imaging methods, selected325

parcellations or implemented algorithms may lead to slightly altered outcomes.326

4 Methods327

4.1 Participants328

Thirty-five healthy young adults were invited for study participation. Exclusion crite-329

ria comprised self-reported indications of psychological and neurological disorders or330

acute or chronic heavy respiratory diseases that may prevent the participant from sit-331

ting still during the EEG recording. Participants’ hearing thresholds between 1 and332



12.5 kHz were measured via pure tone audiometry (Sennheiser HDA200; AGRA Exp-333

suite application [52]), with a deviation of more than 20 dB from the age mean [53]334

leading to subject exclusion. Six participants were excluded (29 remaining subjects, 15335

females: 25.0±2.60 years old (mean ± standard deviation); 14 males: 25.1±2.77 years336

old). An error rate in recognition of static sounds (catch-trials) exceeding 20% resulted337

in one additional exclusion (female, 45.2% errors).338

In total, 28 participants were included in this study. They were informed of the pro-339

cedure and their rights (no deception nor harm, freedom to interrupt the experiment340

without justification or repercussions) and signed informed consent prior to testing.341

The study was conducted in accordance with the standards of the Declaration of342

Helsinki. No additional ethics committee approval was required given the non-medical343

non-invasive nature of our study, as per the Austrian Universities Act of 2002. Exper-344

iments lasted around five hours per subject and participants were remunerated after345

testing.346

4.2 Stimuli347

The auditory stimuli were complex harmonic tones [54] (F0 = 100 Hz, bandwidth348

1− 16 kHz), filtered with listener-specific head-related transfer functions (HRTFs) to349

sound as coming from either the right or left direction on the interaural axis when350

presented over earphones. Stimulus duration was 1.2 s with 10 ms onset and offset351

ramps of raised-cosine shape. Inter-stimulus intervals lasted 500 ms. Trials were ran-352

domized throughout the experiment and balanced over blocks, with 50% looming and353

50% receding sounds. Those were created by either modifying the intensity or the354

spectral shape of a sound and crossfading between the final simulated sound source355

positions (from far to near for the looming, and near to far for the receding condition).356

The intensity manipulation resulted in a sound appearing to recede while its intensity357

decreased with time. We presented sounds crossfading between +2.5 dB (near position)358

and −2.5 dB (far position) to induce looming and receding sensations (e.g., 11). For359

changes in spectral shape, we manipulated the individually recorded HRTFs follow-360

ing the procedure introduced in [12]. The different cue types were applied block-wise.361

Apart from movement and spatial cue type, we block-wise manipulated whether the362

sound source was presented from the left or the right side of the listener. The exper-363

iment consisted of two parts: an initial passive listening part, during which subjects364

were watching a silent subtitled movie while being exposed to 600 trials and a sub-365

sequent active part, in which subjects performed a spatial discrimination task on the366

presented sounds.367

Stimuli and experimental procedures were programmed in MATLAB (R2018b,368

Mathworks, Natick, Massachusetts) with the use of the Auditory Modeling Tool-369

box [55] and Psychtoolbox [56].370

4.3 Recordings and processing371

EEG recordings were done with a 128-channel system (actiCAP with actiCHamp;372

Brain Products GmbH, Gilching, Germany) at a sampling rate of 1 kHz. Noisy373

channels were being noted during the recordings. All saved EEG data were visually374



inspected to detect potential additional noisy channels, which were then spherically375

interpolated. Inspected data were bandpass-filtered between 0.5−100 Hz (Kaiser win-376

dow, β = 7.2, n = 462) and epoched ([−200, 1500] ms) relative to stimulus onset. We377

applied hard thresholds at −200 and 800 µV to detect and inspect extremely noisy378

trials. An additional check for the identification of additional bad channels was imple-379

mented, via an automatic channel rejection step; detected channels would then be380

visually inspected and interpolated. No additional noisy channels were detected for381

any of the subjects at this step. Independent component analysis (ICA) was followed382

by a manual artifact inspection and rejection of oculomotor artifacts (removal of up383

to 3 components per subject). The cleaned data were thereafter re-referenced to their384

average. Within each subject, trials were equalized to match the condition with the385

minimum amount within the subject after trial rejection. This was achieved within386

each subject by pseudo-selection aiming to maintain an equal distribution across the387

recordings. This resulted in an average of 569 clean trials (SD = 27.7) per subject. All388

preprocessing steps were undertaken on the EEGLAB free software ( 57) in MATLAB389

(R2018b, Mathworks, Natick, Massachusetts).390

Twenty-five (25) of 28 participants had their individual anatomical structures and391

electrode positions recorded. Anatomical magnetic resonance images (MRIs) were seg-392

mented via Freesurfer [58] and used to create a study protocol on Brainstorm [59].393

For the remaining 3 subjects, the default anatomical models of Brainstorm were used394

(ICBM152 brain template); individual MRIs could not be recorded due to incompati-395

bilities with the scanner (suspicion of metallic parts in the body). Anatomical models396

were created via OpenMEEG [60] with following parameters: boundary element model397

(BEM) surfaces had 1922 vertices per layer for scalp, outer skull and inner skull, and398

a skull thickness of 4mm. The relative conductivity was set to 0.0125 for the outer399

skull and to 1 for the remaining layers. Manual co-registration between head model400

and individual electrode locations was done for each subject individually. Recorded401

activity was inferred to the cortical surface via dynamic statistical parametric map-402

ping (dSPM) [61]. The noise covariance was calculated from a 200ms pre-stimulus403

interval. Dipole orientations were considered constrained to the surface and source404

signals were reconstructed at 15000 vertices describing the pial surface. Following pre-405

vious literature [13, 23], cortical mapping was done according to the Desikan-Killiany406

parcellation [32]. We extracted all ROI time series from the 68 areas of the atlas, as407

defined in Brainstorm. Based on the evoked time courses at the level of the transverse408

temporal gyrus, taken from [10], a time window of 300 ms post-change was defined as409

the time window of interest.410

4.4 Connectivity calculations411

Our NDTE connectivity analyses, being based on Granger causality, assume station-412

ary signals as input. In order to fulfill this stationarity requirement, we tested our413

time courses for this property. Following the recommendations of Brainstorm [59],414

each time-series was subjected to both the Kwiatkowski-Phillips-Schmidt-Shin test415

(KPSS) for trend-stationarity and the unit root Augmented Dickey Fuller test (ADF),416



as implemented in MATLAB 2018b ( kpsstest, adftest; Mathworks, Natick, Mas-417

sachusetts). As broadband EEG signals are highly non-stationary, stationarity of all418

signals was restored through double differencing of the individual time-series [24].419

4.4.1 INSIDEOUT420

The INSIDEOUT framework [29] is based on the time-shifted correlation matrices421

between each considered time series and its time-reversed version, thereby echoing the422

asymmetry in temporal processing. The arrow of time captures the interaction with423

the environment: a system that remains unperturbed by external factors maintains its424

intrinsic equilibrium and is therefore characterised by high reversibility. Higher dissim-425

ilarity of the forward and reverse time series corresponds to higher non-reversibility,426

and thereby higher impact of the external environment on the intrinsic dynamics.427

Reversed time series were obtained by inverting the original ones in time, for428

each condition, subject, ROI and trial. Correlations between time series were cal-429

culated through the MATLAB function corr, for both the forward as well as the430

reverse time-shifted correlations. If FSforward(T ) and FSreversal(T ), expressed as431

mutual information based on the time-shifted correlations, are the matrices repre-432

senting the causal dependencies of the system, here across ROIs, the non-reversibility433

(non-equilibrium) per condition is calculated as434

NR = ||FSforward(T )− FSreversal(T )||2 (1)

and is hence equal to the mean of the absolute squared difference between the for-435

ward and reversed matrices (cf. [29] for detailed calculations). Time-shift T is defined436

as the decay to the first minimum of the autocorrelation function across conditions437

and subjects [29, 30].438

Statistical differences among the conditions were assessed based on ANOVA with439

the factors of attention, cue type and motion direction.440

4.4.2 NDTE441

The data used in the assessment of NDTE were based on the extracted looming bias442

on a single trial basis for each ROI. All subsequent calculations were done following the443

pipeline described by Deco et al. [30]. In it, the statistical causal interaction between444

any two ROIs is assessed based on the measure of mutual information. Considering X445

and Y to denote the activity of the source and target ROIs, respectively, the mutual446

information is calculated as447

I(Yi+1;X
i|Y i) = H(Yi+1|Y i)−H(Yi+1|Xi, Y i) (2)

where I(Yi+1;X
i|Y i) corresponds to the degree of statistical dependence between448

the source’s past Xi = [Xi, Xi−1, ..., Xi−(T−1)] and the target’s immediate future449

Yi+1 [30].H(Yi+1|Y i) andH(Yi+1|Xi, Y i) express the respective conditional entropies,450

that are, in the implemented framework, estimated based on covariance matrices [62].451

The time interval defined by T stems from the autocorrelation of the time series.452

Following Deco et al. [30], the corresponding order (”maximum lag”) was calculated453



based on the decay to the first minimum of the autocorrelation function across con-454

ditions and subjects; in our case T = 6. In order to be able to compare and combine455

NDTE values across ROI pairs, calculated connectivity values were normalised as456

FXY = I(Yi+1;X
i|Y i)/I(Yi+1;X

i, Y i) (3)

namely by the total mutual information the past of both source X and target Y457

hold about the future of target Y . This is the quantity considered throughout our458

calculations and yields, for each trial, an NDTE matrix with the bidirectional flow459

among all 68 ROIs of the parcellation.460

As the whole cortical surface and all bidirectional connections therein are consid-461

ered, the high amount of comparisons is susceptible to spurious correlation outcomes.462

For that reason, circular-shift surrogate data were generated for each considered ROI463

pair. P-values for each connection were assessed based on the distribution of connec-464

tivity data resulting from 100 independent circular time-shifted surrogate iterations.465

Statistical significance of connections between ROIs was calculated through p-value466

aggregation done by Stouffer’s method [63] in two steps; initially at a subject level467

with a within-condition aggregation across trials of a subject, and subsequently at a468

group level, with aggregation across all subjects of a condition. For each considered469

condition, the multiple comparison correction was performed by the false discovery470

rate method (FDR) [64]. The corrected values were then used as a binary ”signifi-471

cance mask”, to select the significant connections per condition. The resulting data472

comprised one NDTE matrix of dimensions ROI x ROI per condition, containing the473

averaged connectivity values for the ROI pairs that survived the significance evalua-474

tions. Inflow ROIs are positioned along the first, while outflow ROIs along the second475

dimension of the NDTE matrix, termed CAll.476

For each ROI i of CAll, the total inflow from all remaining ROIs j of the cortical477

parcellation is defined as the sum of connectivity across all columns of the matrix:478

Gin(i) = ΣjCAlli,j . The respective holds for the total outflow per ROI j: Gout(j) =479

ΣiCAlli,j .480

The major hubs are identified through an iterative process. After sorting the regions481

based on their inflow (for inflow hubs) or outflow (for outflow hubs), an algorithm482

searches for the largest subset of ROIs k that have a valueGhub significantly larger than483

any other set, comprising the same amount of regions. The significance value of each484

Ghub(k) is assessed via 1000 Monte Carlo simulations, where for each permutation,485

one member of the current subset k is substituted with any of the remaining ones from486

the parcellation, and the Ghub(k) is calculated anew. The in- and outflow values are487

calculated as488

Ghub(k) = ΣkCAllk + a ∗ ΣkGin(k)− b ∗ ΣkGout(k) (4)

where ΣkCAllk is the total flow within the considered subset, ΣkGin(k) repre-489

sents the total inflow to the considered subset from all ROIs of the parcellation and490

ΣkGout(k) the total outflow of the subset to the rest of the ROIs. For the inflow hubs491

the mutlipliers are [a = 1; b = 1] and for the outflow hubs [a = −1; b = −1].492



By progressively adding one ROI (”node” in [30]) to the considered subset (k =493

[i1, ..., il], where l is the whole set of ROIs), the major hubs emerge as the set for which494

the in- or outflow is still within significance limits (i.e., smaller than 0.05).495

Data availability. Data are available under https://osf.io/4gdy2/.496
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