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Preliminaries

You read the revised version, as of of this PhD thesis. Experience (and
Murphy’s law) tells us that as soon as it is printed, the first errors will
appear. If you find an error or have any comment, please contact the author,
peter.balazs@oeaw.ac.at. For this work it was only !26 hours! until the
first error was found. The author will try to keep an updated and corrected
version available on the internet. For the time being this work can be found
at

http://www.kfs.oeaw.ac.at/xxl/dissertation/dissertation.pdf

Motivation

The relevance of signal processing in today’s life is clearly evident. Without
exaggeration it can be said, that any advance in signal processing sciences di-
rectly lead to an application in technology and information processing. With-
out modern signal processing methods several modern technologies would not
be possible, like the mobile phone, UMTS, xDSL or digital television.

In many scientific fields, for example in statistics and theoretical physics,
it could be seen in the past, that scientists from different fields develop par-
allel and incoherent theories. This is highly inefficient from the research
community’s point of view. On the other hand wavelet theory had shown
that, if theory and application, respectively mathematicians and engineers,
work together, coherent results can be reached and through concentrated
work a high synergy effect can be obtained.

Although the Fourier transformation and the short time Fourier transfor-
mation have been used for quite some time, only in the last couple of years
a concentrated field, namely ”Mathematical Signal Processing”, was defined
and pursued. The connection between application and theory in the so called
Gabor theory has lead to many interesting results. This work should be seen
right at this connection.

Gabor analysis is the mathematical name for a sampled version of the so
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called Short-Time Fourier Transformation, which is a time-frequency analy-
sis method. This mathematical subfield allows the answer of many ques-
tions, which are relevant for applications, e.g. how the parameters of an
analysis-synthesis system can be chosen, such that perfect reconstruction
can be achieved. As another example, Gabor theory is currently used to de-
velop the background for a standardized duplex scheme for vDSL (very high
bit rate digital subscriber lines).

Many applications use a modification on the coefficients obtained from
the analysis operation. An example of this is an equalizer, which uses a
transformation into the frequency domain, modifies the obtained coefficients
and then a synthesizer transforms the result back into a time domain signal.

If the modification of the time-domain coefficients is done by multiplying
them with a function in the frequency domain, the whole process is called
time-invariant filtering. This technique have been used for many years and
finds a wide range of applications, e.g., to improve the sound of telephone
communications. A generalization of this technique is the so called time-
variant filtering, which has got more and more attention in the last couple
of years. The so called Gabor multipliers are particular cases of time-variant
filters. In this case, the signal to be processed is transformed into the time-
frequency domain and the resulting coefficients are multiplied by a function
on the same domain.

A frequently used and publicly well-known technology is the MP3 -format
for audio file. This is an encoding / decoding scheme in the MPEG1/MPEG2
(Layer 3) standard. This technique is used to reduce the digital size of a
sound signal. It is based on a coder, which uses a model of the human
audio perception. It is known in psychoacoustics that not all the information
contained in an audio signal can be perceived by the human ear. More
precisely, if the audio signal is transformed into the time-frequency domain
, it turns out that some time-frequency components mask (i.e., hide) other
components which are close in time or frequency. Clearly filtering out this
components will result in reducing the memory space required to store the
signal, without any subjective quality loss. An idea of how to extend known
masking algorithms to a time-frequency model is given at the end of this
work. This is done by using Gabor multipliers. As the linear frequency
scale Hz is not very well-fitted to the auditory perception, another frequency
sampling, following the Bark scale, is chosen. This leads to irregular Gabor
multipliers. As many powerful mathematical tools are lost by giving up the
group structure of regular sampling, the author decided to first investigate
an even more general case, namely, frame multipliers.
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Approach

The goal of this work is to span the whole arc from mathematical theory to
application. We will start with the theory of frame multipliers, proceeding
with Gabor multipliers (especially for irregular systems), investigating the
numerics of the discrete Gabor analysis and applying the theory to give an
idea for a time-frequency masking algorithm. A big goal of this work is to
develop the connection between theory and applications and therefore the
implementation of algorithms is a natural goal.

We will investigate the mathematical background for a possible imple-
mentation of a time-frequency masking filter. As the human perception is
not very well fitted to a regular frequency sampling, we will consider irregular
Gabor multipliers. We will introduce a generalization of Gabor multipliers,
namely frame multipliers, intended to provide the background for other pos-
sible representation for the auditory system. With the popularity of wavelets,
irregular Gabor frames, multi Gabor frames or other analysis systems like
Gammatone filters, it is worthwhile to investigate the most general class of
these operators.

As mentioned above, this work deals with theoretical results as well as
computational issues. Nearly all results in this work are linked to some al-
gorithm, and therefore, we concentrate on the analysis of finite-dimensional
spaces. In Chapter 4, we will focus on a potential application, namely, psy-
choacoustical masking.

Historical Remarks

The name ”Gabor analysis” is a rather recent one, but the idea goes back
quite some while. In engineering the Fourier transformation was used exten-
sively, especially after the development of the very efficient FFT-algorithm
[27]. For application in music or speech processing it is necessary to get a
joint time-frequency representation. For example the phase vocoder [56] has
been used as early as in the 60ties.

Dennis Gabor investigated in [60] the representation of a one dimensional
signal in two dimensions, time and frequency. He suggested to represent a
function by a linear combination of translated and modulated Gaussians.
Interestingly there is a tight connection of this approach to quantum me-
chanics, c.f. e.g. [57]. The most prominent connection is the uncertainty
principle, which is very important in both fields.

The concept of a time frequency representation based on the FFT was
made more concrete and the Short Time Fourier Transformation (STFT)
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was introduced, c.f. e.g. [3]. On the mathematical side the representation of
functions by other functions was further investigated and leaded to the the-
ory of atomic decomposition, for example by Feichtinger and Gröchenig, refer
e.g. to [40]. With time the STFT became a widely used tools. Apart from
the uncertainty principle another disadvantage of this technique is the high
redundancy. Instead of using the whole STFT a sampled version is used for
resynthesis and this is what today is understood as Gabor analysis. With the
advent of wavelet theory, cf. [29], and the general interest to investigate the
theory of signals due to the new telecommunication applications Gabor the-
ory and applications have become an important field of applied mathematics.
For example Wexler and Raz investigated in [131] how to use Gabor analysis
in applications and algorithms. A fundamental property was shown there,
the duality principle, which reduces the question of perfect reconstruction
to a simple set of equations. Today Gabor analysis and the closely related
wavelet theory are one of the mathematical fields, where theory and applica-
tion, mathematicians and engineers work closely together. For example the
equivalence between Gabor analysis and filter-bank approaches was shown
in [14].

From the applications of Gabor theory it soon become apparent that the
notion of an orthonormal basis is not always useful. Sometimes it is more
important for a decomposing set to have special properties, like good time
frequency localization, than to have unique coefficients. This leaded to the
concept of frames, which was introduced by Duffin and Schaefer in [36]. It
was made popular by Daubechies, c.f. [29], and today is one of the most im-
portant foundations of Gabor theory. In application frames became more and
more attention, in the form of oversampled filter banks, c.f. e.g. [14]. With
this theory many questions can be formulated in a very clear and precise way.
For example the question whether a filter bank yields perfect reconstructions
can be translated to the search for a dual frame.

Filters are a common tool in signal processing. They correspond to time-
variant operators. Clearly there are also time-variant systems, refer for ex-
ample to [70]. Gabor multipliers are special cases for such operators. They
are a natural extension of filters, which are operators where the spectrum is
multiplied with fixed coefficients. Gabor multipliers are operators, where the
time frequency coefficients are multiplied by a fixed time-frequency pattern.
They have been investigated most prominently by Feichtinger for example in
[47]. These operators have been used in engineering implicitly for quite some
time, for a recent application in seismic imaging see for example [93].
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The effect of psychoacoustical masking is well-known cf. [137]. A lot of
publications in the last 25 years dealt with this effect, refer for example to [39]
or [109]. One of its most important application is the psychoacoustical model
of the MP3 coding scheme see e.g. [79]. In this work we will investigate an
extension of the irrelevance filter found in [37] and implemented in STX [96],
a signal processing software system programmed at the Acoustics Research
Institute Vienna, to a time-variant filter, that models both frequency and
temporal masking.

Main results

As usual all results in this work with given proofs respectively without a
citation are original work. A few of them are well-known, but had to be
proved under different assumptions. We will summarize the most important
results in the following sections:

Mathematical Theory:

Interesting new results from a theoretical mathematical point of view are the
following:

We are going to introduce the concept of frame multipliers, a generaliza-
tion of the idea of Gabor multipliers. This idea will be formulated for Bessel
sequences, frame sequences and Riesz sequences. Two main theorems will be
proved. One is dealing with the connection of the symbol to the operator.
Most notably if the symbol is in the sequence space l∞, l2 or l1 respectively,
then the multiplier is a bounded, trace class or Hilbert-Schmidt operator
respectively. The other main result is the continuous dependency of the op-
erators on symbol and frames, where the measurement of the similarities of
frames has to be chosen in the right way. We are going to investigate other
connections of frames and operators, for example how an operator can be
described by a matrix using frames. We will investigate multipliers for Riesz
sequences and we will see, that in this case these operator can be described
uniquely be their symbols.

As mentioned before, we nearly always intend to implement an algorithm
connected to the results. Therefore the investigation of frames in connec-
tion with finite dimensional spaces is investigated. In particular we will show
that it is possible to classify finite-dimensional spaces and, connected to that,
Hilbert-Schmidt operators by frames.
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We are going to investigate Gabor multipliers for irregular Gabor systems.
We will investigate the irregular Gabor systems and, for example, will show
directly that for relatively separated irregular lattices, the Gabor system with
a window in S0 (i.e., the Feichtinger’s Algebra) forms a Bessel sequence.

We will use the developed theory for frame multipliers for irregular Ga-
bor multipliers. Moreover we will use the special coherent structure of these
frames for other results. Most importantly we will show that under the right
conditions the continuous dependency of the multipliers can be extended to
the connection to the symbol, the atoms and the lattice. And for these re-
sults a ’Jitter-like’ norm suffices.

We will investigate the Gabor analysis for the finite-dimensional case very
thoroughly. We will look into the theory of block matrix important for Gabor
analysis. We will show that they form matrix algebras and are connected to
each other using the Matrix Fourier Transformation. We will show a tight
connection between the well-known representations of a Gabor frame matrix
by the so-called ’non-zero’ block matrix and the Janssen matrix. Based on
that we will introduce two new matrix norms and investigate the equivalences
between them.

We will dedicate a full section to an article by Thomas Strohmer [122],
which is a perfect starting point for the investigation of Gabor algorithms.
We have found a few small errors in this article, which we will correct here
in this work.

Computational Aspects:

From a more computational point of view the following original statements
should be highlighted:

For the general frame case we are comparing different ways to calculate
the inner product of a matrix with the Kronecker product matrix of two
vectors. This is important for the approximation of any matrix by a frame
multiplier for a fixed frame. An algorithm for this will be presented in this
work. It will be programmed in MATLAB and can be found in the appendix.

Several MATLAB algorithms will also be implemented for Gabor sys-
tems, e.g. the calculation of an irregular Gabor family. Also an algorithm
for the approximation of an arbitrary matrix by the Gabor multiplier of two
irregular Gabor families is going to be presented. It will be compared to
existing algorithms for regular lattices.
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For the inversion of Gabor frame matrices we will present a method using
the special sparse structure of it to find a fast algorithm. This program uses
double preconditioning and numerical experiments will be done to investigate
the efficiency of this method. In particular it will be compared to the methods
using only single preconditioning by projection on circular or respectively
diagonal matrices. We will especially examine how well and in which case the
preconditioning matrix itself is already a good approximation of the inverse
matrix.

Application In Psychoacoustics:

We will introduce a concept of how to extend an existing masking algorithm,
which only incorporates simultaneous frequency masking, to a time-frequency
model. This will be an irregular Gabor multiplier with coefficients 1 or 0.

Organization

This work is organized as follows.

• In Chapter 1 we will investigate the general theory of frames, which
will be used in our development of the Gabor theory. After a thor-
ough introduction to frame theory, special emphasis will be given to
the investigation of the connections between frames and operators, as
well as the relationship between finite-dimensional spaces and frames.
The new concept of frame multipliers, a generalization of Gabor multi-
pliers, will be also introduced and investigated. We will address basic
questions like the dependency of the operator on the symbol.

• In Chapter 2 the Gabor theory is investigated, especially the irregular
case. Special attention will be given to Gabor multipliers, again with
special emphasis on irregular sampling. The problems we will investi-
gate include the continuity of the dependency of this operators on the
windows, symbol and lattice. We will also introduce an algorithm for
the approximation of any matrix by irregular Gabor multipliers.

• In Chapter 3 will introduce the discrete final-dimensional Gabor analy-
sis. We will investigate special types of matrices important for Gabor
analysis. In connection with the well-known special structure of the
Gabor frame matrix, we will introduce two new norms, which are up-
per bounds for the operator norm and which can be calculated in a
numerically very efficient way. For the regular case, we will introduce a
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new method to approximately invert the Gabor matrix by using Double
Preconditioning.

• In the last chapter, i.e., Chapter 4, we will introduce the basic ideas
of human auditory perception and masking filters. Although this is a
mathematical work, we will introduce a concept for a method on how
to extend the masking filter of the program STX to a time-frequency
filter incorporating simultaneous and temporal masking. This concept
was developed with the help of a psychoacoustican.

• In the appendix we provide the required mathematical background,
with the aim of making this work “more” self-contained. The appendix
also contains the algorithms developed in Chapters 1 – 3.
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Chapter 1

Frame Multiplier

” [A company] designed this brilliant open frame multiplier to meet the exact-
ing criteria of the demanding tournament casting circuit and the discerning
UK beach angler. [...]”

(Taken from http://www.fishingmegastore.com )

Figure 1.1: A Frame Multiplier

The application of signal processing algorithms are numerous, many of
them adaptive or time variant filters, for example the implementation of a
psychoacoustic masking filter, as in Section 4.1.2. If the STFT, the Short
Time Fourier Transformation, refer to Section 2.1.1, is used in its sampled
version, the Gabor transform, one possibility for time variant filter is the
usage of Gabor multipliers, see Section 2.3. Gabor multipliers are a current
topic of research (cf. e.g. [47] and [34]). For these operators the Gabor
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transform is used to calculate time frequency coefficients, they are multiplied
with a fixed time-frequency mask and then the result is synthesized, see
chapter 2.3. These operators have been used for quite some time implicitly.
Recent applications are for example in system identification, see [85].

If another way of calculating these coefficients is chosen or if another
synthesis is used, many modifications can still be seen and implemented as
multipliers. So for example it seems quite natural to define the equivalent
for wavelet frames, something like a wavelet multiplier.

Also as irregular Gabor frames get more and more attention (see e.g. [82]),
Gabor multiplier on irregular lattices can be investigated, refer to Section
2.5. There the group structure of the lattice is non-existent and so cannot
be exploited. So it is quite natural to look on frames without any further
structure first.

The formulation of a concept of a multiplier for other analysis / synthesis
systems like e.g. Gammatone filter banks (e.g. refer to [67]), which are
mainly used for analysis based on the auditory system, is possible and useful.
In [100] a Gammatone filter bank was used for analysis and synthesis, for the
sound separation part a neuronal network creates a frame multiplier for these
coefficients.

To have perfect reconstruction / synthesis seems in all theses cases to
be valuable and a frame would give this possibility. The added restriction,
needed for frames, that the l2-Norm of the coefficients should be an equiva-
lent norm, seems very natural.

So it seems useful to group all these operators in a more general concept
than the Gabor multiplier: the frame multiplier, which we will investigate in
section 1.3.

We start this chapter with a general introduction to the theory of frames.

1.1 Frames

1.1.1 Introduction

Definition 1.1.1 The sequence G = (gk|k ∈ K) is called a frame for the
(separable) Hilbert space H, if constants A,B > 0 exist, such that

A · ‖f‖2
H ≤

∑

k

|〈f, gk〉|2 ≤ B · ‖f‖2
H ∀ f ∈ H (1.1)
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Definition 1.1.2 In the above definition A is called the lower, B the upper
frame bound. If the bounds can be chosen such that A = B the frame is
called tight. If G ceases to be a frame, if any one element is removed, then the
frame is called exact. If the frame is not a basis, it is called overcomplete.
If ‖gk‖H = 1 for all k, then the frame is called normalized. basis, it
is called overcomplete. If ‖gk‖H = 1 for all k, then the frame is called
normalized.

The index set will be omitted in the following, if no distinction is nec-
essary. In 1.1.32 we will see that the properties exact and overcomplete
are mutually exclusive. Lemma [23] 5.1.7. shows that it is sufficient for a
sequence to be a frame to fulfill the frame condition on a dense subspace.

Definition 1.1.3 If a sequence (gk) fulfills the ”upper frame condition”

∑

k

|〈f, gk〉|2 ≤ B · ‖f‖2
H ∀ f ∈ H

it is called Bessel sequence.
If a sequence (gk) fulfills the frame condition for its closed linear span,

then it is called a frame sequence, i.e.

A · ‖f‖2
H ≤

∑

k

|〈f, gk〉|2 ≤ B · ‖f‖2
H ∀ f ∈ span{gk}

In a finite-dimensional space, see Section 1.2, clearly every subset of a frame
is a frame sequence. But in general Hilbert spaces, this is not true anymore,
see [23] Section 6.2. Also in the general, infinite-dimensional case not every
frame can be thinned out to a basis, as there are frames, which do not contain
a basis, see [23] Section 6.4. This shows that some expectations, which arise
from experience with finite dimensional bases, have to be dropped.

As a direct consequence of the definition of Bessel sequence we can show

Lemma 1.1.1 Let (fk) be a Bessel sequence for H. Then

‖fk‖H ≤
√
B.

Proof: For fk0 use the inequality

∑

k

|〈fk0 , fk〉|2 ≤ B · ‖fk0‖2
H

=⇒ ‖fk0‖4
H +

∑

k 6=k0

|〈fk0 , fk〉|2 ≤ B · ‖fk0‖2
H
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‖fk0‖4
H ≤ ‖fk0‖4

H +
∑

k 6=k0

|〈fk0 , fk〉|2 ≤ B · ‖fk0‖2
H

and so (wlog fk0 6= 0)
‖fk0‖2

H ≤ B

2

This result for frames is also part of Proposition 1.1.16.

It is an interesting property of frames, that by removing an element you
cannot keep completeness while losing the frame property:

Proposition 1.1.2 ([23] 5.4.7) If you take out one element of a frame, the
reduced sequence will either form a frame again or be incomplete.

Let us look at a simple example:

Example 1.1.1 :

Let {ei} and {e′j} be two disjoint ONBs for the Hilbert space H. Then
{gk} = {ei} ∪ {e′i} is a tight frame with the frame bound A = 2.

∑

k

|〈f, gk〉|2 =
∑

i

|〈f, ei〉|2 +
∑

j

∣∣〈f, e′j
〉∣∣2 = ‖f‖ + ‖f‖ = 2 · ‖f‖

1.1.2 The Frame Operator

Definition 1.1.4 Let G = {gk} be a frame in H. Then let CG : H → l2(K)
be the analysis operator

CG(f) = {〈f, gk〉} .

Let DG : cc(K) → H be the synthesis operator

DG({ck}) =
∑

k

ck · gk.

Let SG : H → H be the frame operator

SG(f) =
∑

k

〈f, gk〉 · gk.
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If it is not necessary to distinguish different frames, and it is clear, which
frame is used, we will just write S for SG, C for CG and D for DG. We will
also use the indexing Cgk

for CG and also the other operators.
For a given frame C and D are clearly linear and on cc, the sequence

space of finite sequences, the equality C∗ = D is true. It can be easily shown
that the operator C is bounded and injective. (See also Section 1.1.6). This
is just a rewriting of the frame property from Definition 1.1 as

A · ‖f‖2
H ≤ ‖C(f)‖2

2 ≤ B · ‖f‖2
H

which is equivalent, see appendix A.4.3.3, to C being bounded and having a
bounded inverse (on ran(C)).

So D can be extended to a function DG : l2(K) → H with C∗ = D on l2.
Even more:

Theorem 1.1.3 ([63] 5.1.1) Let G = {gk} be a frame for H.

1. C is a bounded, injective operator with closed range with ‖C‖op ≤
√
B

2. C and D are adjoint to each other, D = C∗ and so ‖D‖op = ‖C‖op ≤√
B. The series

∑
k

ck · gk converges unconditionally.

3. S = C∗C = DD∗ is a positive invertible operator satisfying AIH ≤ S ≤
BIH and B−1IH ≤ S−1 ≤ A−1IH.

4. The optimal frame bounds are Bopt = ‖S‖Op and Aopt = ‖S−1‖−1
Op.

From 1.1.3 we know that AIH ≤ S ≤ BIH and therefore A ≤ ‖S‖Op ≤ B
as ‖T‖Op = sup

‖f‖
H
≤1

{〈Tf, f〉} for positive operators T .

A ≤ ‖S‖H = ‖C∗ ◦ C‖H ≤ ‖C‖2
H

So
√
A ≤ ‖C‖H.

Corollary 1.1.4 Let G = {gk} be a frame for H. Then the operator norm
of the analysis operator C is bounded by roots of the frame bounds A,B:

√
A ≤ ‖C‖Op ≤

√
B

Ignoring the fact that we don’t have a frame, we define
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Definition 1.1.5 Let {gk} and {γl} be two sequences, then we call

Cgk
(f) = (〈f, gk〉)

the associated analysis operator,

Dgk
(c) =

∑

k

ck · gk

the associated synthesis operator, and

Sgk,γk
f :=

∑

k

〈f, gk〉 γk

the associated frame operator.

These definitions are possibly not well-defined. In Section 1.1.6 it is
shown that they certainly are for Bessel sequences. We will omit the word
’associated’ if there is no confusion possible.

If the sequences are not frames or they are different from each other,
the operator S is clearly not a true frame operator, but it shares a lot of
properties, like this simple one:

Lemma 1.1.5 Let {gk} be a Bessel sequences, then Sgk,gk
is self-adjoint and

positive semi-definite and positive definite on span{gk}.

Proof: S is clearly well-defined as C and D are.

〈Sf, g〉 =
∑

k

〈f, gk〉 〈gk, g〉 = 〈f, Sg〉

〈Sf, f〉 =

〈
∑

k

〈f, gk〉 gk, f
〉

=
∑

k

〈f, gk〉 〈gk, f〉 =
∑

k

|〈f, gk〉|2 ≥ 0

If
∑
k

|〈f, gk〉|2 = 0 =⇒ 〈f, gk〉 = 0 ∀gk =⇒ f ∈ span{gk}⊥. 2

This stays true, if we do not know anything about the sequence except that
the associated frame operator is well-defined.
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1.1.3 Union Of Frames

The union of two frames is clearly a frame again. Let (hk) and (gi) be the
two frames with Ah, Ag as lower and Bh, Bg as upper frame bounds. Then

Ah ‖f‖2
H ≤

∑

k

|〈f, hk〉|2 ≤
∑

l

|〈f, hl〉|2 +
∑

k

|〈f, gk〉|2

So Ah is a lower bound for the union. If a ’more tight’ bound is desirable
other options are max{Ah, Ag} or A = Ah + Ag.

On the other hand
∑

k

|〈f, hk〉|2 +
∑

k

|〈f, gk〉|2 ≤ Bh ‖f‖2
H +Bg ‖f‖2

H = (Bh +Bg) ‖f‖2
H

For countable many frames a sufficient condition for the union to be
a frame again is

∑
iBi < ∞, if the sums of the upper frame bounds are

summable . The lower bound is fulfilled by any Ai. This means that even a
union of a frame with countable many Bessel sequences is a frame again.

A much more interesting question is, when is a union of parts of frames a
frame again, see e.g. quilted Gabor frames [35] or time-frequency jigsaw puzzle
[72]. In these studies a frame decomposition is searched, where different
(Gabor) frames are used on a local level, so intuitively on certain parts of
the time-frequency plans one frame is used and the others are disregarded.

But clearly the upper frame conditions is not the problem in these cases.

Lemma 1.1.6 Let (fk|k ∈ K) and (gi|i ∈ I) be two Bessel sequences for
H with bounds B1 and B2, let K1 ⊆ K, I1 ⊆ I. Then {hj} = {fk|k ∈
K1} ∪ {gi|i ∈ I1} is a Bessel sequence with bound B1 +B2.

Proof: ∑

j

|〈f, hj〉|2 =
∑

k∈K1

|〈f, fk〉|2 +
∑

i∈I1

|〈f, gi〉|2 ≤

≤
∑

k∈K
|〈f, fk〉|2 +

∑

i∈I
|〈f, gi〉|2 ≤ B1 ‖f‖2

H +B2 ‖f‖2
H

2

Clearly this can be extended to any finite number of frames and the result
stays valid for a countable number of frames, where

∑
i

Bi <∞.

So the problem that remains (for the union of parts of frames) is the
lower frame bound. See Section 1.1.6 for classifications, a Bessel sequence
fails to be a frame if the synthesis (respectively analysis) operator does not
have closed span or it is not injective (respectively surjective).
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In the finite dimensional case this just means that the kernel of the synthe-
sis operator is not zero, that means there is a ”hole” where the coefficients
are zero, i.e. there are functions ”living in this hole”, non-zero functions
whose coefficients are zero.

For an example look at the above example 1.1.1, where e′i = γi · ei. Then
it is clear if only parts of the two ONBs are used, we have to either take ei or
e′i for every i. So this gives rise to the naive, intuitive notion that we have to
pick the parts carefully, such that information is not lost. But in the cases
of over-complete frames this decision is hard to make, for more information
see [35] and [72].

1.1.4 Dual Frames

If we have a frame in H, we can find an expansion of every member of H
with this frame:

Theorem 1.1.7 ([63] 5.1.3) Let G = (gk) be a frame for H with frame bounds
A, B > 0. Then G̃ = (g̃k) = (S−1gk) is a frame with frame bounds B−1,
A−1 > 0, the so called canonical dual frame. Every f ∈ H has a (possibly
non-orthogonal) expansions

f =
∑

k∈K

〈
f, S−1gk

〉
gk

and
f =

∑

k∈K
〈f, gk〉S−1gk

where both sums converge unconditionally in H.

Any sequence of elements for which synthesis works are called dual, i.e.
(γk) is dual to (gk) if and only if for every f ∈ H we get

f =
∑

k∈K
〈f, gk〉 γk =

∑

k∈K
〈f, γk〉 gk

For the frame {gk} the inverse frame operator is just the frame operator
of the dual frame:

S−1
{gk}f = S−1

{gk}

(
∑

k

〈
f, S−1gk

〉
gk

)
=
∑

k

〈
f, S−1gk

〉
S−1gk = S{S−1gk}f

So every member of the Hilbert space H with a frame can be written as
countable linear combination of the (countable) frame. So
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Corollary 1.1.8 Let {gk} be a frame for the Hilbert space H then H is
separable.

In contrast to orthonormal bases, these expansions are not unique, but
canonical in the following sense:

Proposition 1.1.9 ([63] 5.1.4) Let G = {gk} be a frame for H and f =∑
k∈K

ckgk for some {ck} ∈ l2, then

∑

k∈K
|ck|2 ≥

∑

k∈K

∣∣〈f, S−1gk
〉∣∣2

with equality only if ck = 〈f, S−1gk〉 for all k ∈ K.
More precise ([23] 5.4.2)

∑

k∈K
|ck|2 =

∑

k∈K

∣∣〈f, S−1gk
〉∣∣2 +

∑

k∈K

∣∣ck −
〈
f, S−1gk

〉∣∣2

Duals can also be used to see a property similar to properties of ONBs
regarding the inner product:

Lemma 1.1.10 Let (gk) be a frame for H with a dual (γk). Then for all
f, g ∈ H

〈f, g〉 =
∑

k

〈f, γk〉 〈gk, g〉

Proof: As f =
∑
k

〈f, g̃k〉 gk

〈f, g〉 =
∑

k

〈f, g̃k〉 〈gk, g〉

2

Of course the roles of the dual and the original frame can be switched. This
is also point (iii) in [23] Lemma 5.6.2.

1.1.5 Why Are Frames Useful?

Why should we use frames in the first place? Why not use ONBs? (Because
we now know that the Hilbert spaces are separable, so ONBs exist.)

A short answer: Error-robustness and flexibility.
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Error-robustness or redundancy: Take the example of signal transmis-
sions. Analysis with ONBs gives non-redundant, independent data. If this
data is distorted, for example by noise or transmission errors, there is no way
that the original signal can be reconstructed (without a priori knowledge).
In redundant systems, like frames that are not bases, there may be a chance
to reconstruct the signal. Redundant systems may be error resistant, bases
cannot. (Take as a practical example the internet, which is a highly redun-
dant system. Signals have many different possible routes to be exchanged.
This also means that it is very error resistant, as the loss of one or a few of
these routes does not result in a disturbance of the data.)

Flexibility or degrees of freedom: Sometimes you would like to have cer-
tain properties, while you don’t mind losing others. For the case of frames
for some application the uniqueness of the coefficients is not important, but
some other properties are, like a good time frequency behavior in the Gabor
frame case. With bases you don’t have a lot of freedom, with frames, which
are a bigger class, you have more options.

For a longer answer have a look at chapter 4 of O. Christensen’s book
[23].

1.1.6 Classification

As mentioned in Section 1.1.2 the frame property is equivalent to C being
injective and bounded. But also Bessel and frame sequences as well as frames
can be classified by using the synthesis or analysis operator. We collect the
results from [23] chapter 3 and chapter 5 as well as in [19] and [21] into a
compilation and extend them in a natural way to all (in this context) possible
combination of operators and sequences:

Theorem 1.1.11 1. A sequence (gk) is a Bessel sequence with bound B
if and only if the synthesis operator operator

D : l2 → H with D(ck) =
∑

k

ckgk

is well defined and bounded from l2 in H with ‖D‖Op ≤
√
B.

2. A sequence (gk) is a frame sequence if and only if it is a Bessel sequence
and D has closed range.

3. A sequence (gk) is a frame if and only if it is a frame sequence and D
is surjective.
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4. A sequence (gk) is a frame if and only if it is a Bessel sequence and D
is surjective.

Proof: 1.) [23] 3.2.3 states, that the sequence is a Bessel sequence if and
only if Dgk

is bounded.
2.) See [21] 4.4.
3.) [23] 5.2.1 states, that a frame sequence is a frame if and only if Cgk

is injective. This is equivalent to Dgk
= C∗

gk
having a dense range. If Dgk

is
surjective, this is certainly true.

4.) If D is surjective, it has closed range. So the last item is clearly
equivalent to the third one. 2

We can now state the same result for the adjoint operator:

Theorem 1.1.12 1. A sequence (gk) is a Bessel sequence with bound B
if and only if the analysis operator

C : H → l2 with C(f) = (〈f, fk〉)k

is well defined and bounded from H in l2 with ‖D‖Op ≤
√
B.

2. A sequence (gk) is a frame sequence if and only if it is a Bessel sequence
and C has closed range.

3. A sequence (gk) is a frame if and only if it is a frame sequence and C
is injective.

4. A sequence (gk) is a frame if and only if it is a Bessel sequence and C
is injective.

We can also do the same compilation with the associated frame operator
and extend Theorem 2.5. from [22] to:

Theorem 1.1.13 1. A sequence (gk) is a Bessel sequence with bound B
if and only if the associated frame operator

S : H → H with S(f) =
∑

k

〈f, gk〉 γk

is well defined and bounded from H in l2 with ‖S‖Op ≤ B.

2. A sequence (gk) is a frame sequence if and only if it is a Bessel sequence
and S has closed range.
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3. A sequence (gk) is a frame if and only if it is a frame sequence and S
is injective.

4. A sequence (gk) is a frame if and only if it is a Bessel sequence and S
is injective.

Proof: From Lemma 1.1.5 we know that, if S is well-defined, then S is
self-adjoint and positive semi-definite.

1.) We know from Proposition A.4.15 that

‖S‖Op = sup
‖f‖

H
≤1

|〈Sf, f〉|

and because 〈
S

f

‖f‖H
,

f

‖f‖H

〉
=

1

‖f‖2
H
〈Sf, f〉

we know that
‖S‖Op · ‖f‖

2
H ≥ 〈Sf, f〉 for allf 6= 0.

〈Sf, f〉 =
∑

k

|〈f, gk〉|2

and so we know ∑

k

|〈f, gk〉|2 ≤ ‖S‖Op · ‖f‖
2
H ∀f

For the other direction let {gk} be a Bessel sequence, then C and D are
well-defined and bounded. The frame operator S = D ◦C and therefore it is
also bounded.

2.) As S is positive on span{gh}, this means that S is injective on
ran(D) = ker(C)⊥, therefore ker(S) ⊆ ker(C). But as S = D ◦ C,
ker(C) ⊆ ker(S) =⇒ ran(S) = ker(S)⊥ = ker(C)⊥ = ran(D), therefore
D is closed and {gk} is a frame sequence.

If {gk} is a frame sequence, we know from Proposition 1.1.14, that S is
an orthogonal projection and therefore closed.

3.) & 4.) If S = D ◦ C is injective, C is injective.
2

The proof also tells us, that for frame sequences ran(S) = ran(D) and
ker(S) = ker(C).

12



1.1.7 Frames And Operators

In this section we will look at the connection of operators and frames re-
spectively other sequences. We will investigate the connection of the frame
bounds and certain operators, apply operators on frames, describe operators
with frames and describe frames as images of ONBs.

But first let us state the very important result:

Proposition 1.1.14 ([23] 5.3.5) Let (gk) be a frame sequence. Then the
orthogonal projection P on the space V = span {gk} is just the frame operator
extended to the whole space H, so

PV (f) =
∑

k

〈f, g̃k〉 gk

where (g̃k) is the dual frame in V .

The space V is closed, see Section 1.1.6, so the projection on this space is an
orthogonal projection.

1.1.7.1 Frame Bounds

Apart from the equalities in Proposition 1.1.3 the optimal frame bounds can
also be given by the operator norm of the analysis or synthesis operators:

Corollary 1.1.15 ([23] Proposition 5.4.4 )Let G = {gk} be a frame for H.
Then the optimal frame bounds Aopt, Bopt are

Bopt =
∥∥C{gk}

∥∥2

Op
=
∥∥S{gk}

∥∥
Op

Aopt =
∥∥C{S−1gk}

∥∥2

Op
=
∥∥∥S−1

{gk}

∥∥∥
Op

Some other statements regarding the properties of the bounds:

Proposition 1.1.16 Let {gk} be a frame with the lower frame bound A and
the upper frame bound B. Then A ≤∑ ‖gl‖2 and B ≥ ‖gl‖2. If ‖gl‖2 < A,
then gn ∈ spanl 6=n (gl), so {gk} is not minimal. B = ‖gl‖2, if bl⊥span{gk}k 6=l.

That A · dimH ≤∑
k

‖gk‖2 can be found in Corollary 1.2.16. The rest can be

found in [16] 4.6.
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1.1.7.2 Operators Applied On Frames

A natural question arises, when we ask if frames keep there frame property
if an operator is applied to its elements. If the operator is surjective, this
is true. Note that U † signifies the pseudo-inverse of the operator U , cf.
appendix A.4.6.

Proposition 1.1.17 ([23] 5.3.2) Let (gk) be a frame with bounds A,B and
U : H → H a surjective bounded operator. Then (Ugk) is a frame with the

frame bounds A ·
∥∥U †∥∥−2

H and B · ‖U‖2
H.

Again this can be easily adapted to Bessel sequences and any operators

Proposition 1.1.18 Let (gk) be a Bessel sequence with bound B and U :
H → H a bounded operator. Then (Ugk) is a Bessel sequence with the Bessel
bound B · ‖U‖2

H.

Proof:

∑

k

|〈f, Ugk〉|2 ≤
∑

k

|〈U∗f, gk〉|2 ≤ B · ‖U∗f‖H ≤ B · ‖U‖2
Op ‖f‖

2
H

2

We can state a similar result for frames:

Proposition 1.1.19 ([23] 5.3.1) Let (gk) be a frame with bounds A and B
and U : H → H a bounded operator with closed range. Then (Ugk) is a frame

sequence with the bounds A ·
∥∥U †∥∥−2

H and B · ‖U‖2
H.

If {gk} is only a frame sequence the proposition stays not true, which might be
surprising. To get this result also for frame sequences, a sufficient condition
would be, that U is a closed function, i.e. it maps closed sets onto closed
sets. (Note: This is not equivalent to being an operator with closed graph,
which is sometimes also called a closed operator). This becomes clear with
the following result:

Corollary 1.1.20 Let (gk) be a Bessel sequence and U : H → H an operator.
Then

SUgk
= U ◦ Sgk

◦ U∗

Proof: We know that (Ugk) is a frame. So

SUgk
f =

∑
〈f, Ugk〉Ugk = U

(∑
〈U∗f, gk〉 gk

)

14



2

For tight frames (fk) with the frame bound A the last corollary gives

SUfk
= A · UU∗

and therefore only unitary operators map tight frames on tight frames with
the same bound .

Lemma 1.1.21 Let (gk) be a frame and let (γk) be the canonical dual frame,
then let Ug and Uγ be the operators with Ug(ek) = gk and Uγ(ek) = γk, then

Uγ = U †
g

Proof: Ug = Dg ◦ Ce is surjective, as (gk) is frame. So

U †
g = (Dg ◦ Ce)∗ ◦ [Dg ◦ Ce (Dg ◦ Ce)∗]−1

=

= De ◦ Cg [Dg ◦ Ce ◦De ◦ Cg]−1 = De ◦ Cg [Dg ◦ Cg]−1 = De ◦ Cg ◦ S−1
g =

= De ◦ Cg ◦ Sγ = De ◦ Cg ◦Dγ ◦ Cγ = De ◦ Cγ = Uγ

2

1.1.7.3 Matrix Representation With Frames

An operator U can be described by the image of the elements of the frame.
For a linear operator U(f) = U(

∑
k 〈f, g̃k〉 gk) =

∑
k 〈f, g̃k〉Ugk. The right

hand side is well-defined, because the Ugk form a Bessel sequence. It is
clearly linear, and it is bounded, again because the Ugk form a Bessel se-
quence. The opposite direction, which is often used with ONBs, to define
an operator by the images of the frame U(gk) := hk is in general not well-
defined. It is well-defined if for

∑
k

ckgk =
∑
k

dkgk =⇒∑
k

ckhk =
∑
k

dkhk, so

if ker (Dgk
) ⊆ ker (Dhk

). If Dgk
is injective, then this is certainly true. We

will look at sequences with that property in 1.1.8.

For ONBs it is well known, that operators can be uniquely described by
the image of this basis, but the same is true for frames. Any operator can be
defined by the images of the elements of a frame. (But contrary to a basis
this definition is not unique any more.) Recall A.4.3.4 the definition of the
operator defined by a (possibly infinite) matrix : (Mc)j =

∑
k

Mj,kck.

We will start with the more general case of Bessel sequences. Note that
we will use the notation ‖.‖Hil2→H2

for the operator norm to be able to
distinguish between different operator norms.

15



Theorem 1.1.22 Let (gk) be a Bessel sequence in H1 with bound B, (fk) in
H2 with B′.

1. Let O : H1 → H2 be a bounded, linear operator. Then the infinite
matrix

M(fk,gj)
k,j = 〈Ogj, fk〉

defines a bounded operator from l2 to l2 with ‖M‖l2→l2 ≤
√
B ·B′ ·

‖O‖H→H.

2. On the other hand let M be a infinite matrix for which the operator
(Mc)i =

∑
k

Mi,kck defines a bounded operator from l2 to l2, then the

operator defined by

(
O(fk,gj) (M)

)
f =

∑

k

(
∑

j

Mk,j 〈f, gj〉
)
fk

is a bounded operator from H1 to H2 with ‖OM‖H1→H2
≤

√
B ·B′ ‖M‖l2→l2.

O(fk,gj) = Dfk
·M ◦ Cgk

=
∑

k

∑

j

Mk,j · fk ⊗ gj

Proof: Let M = M(fk,gj) and O = O(fk,gj)

1.)

(M (O) c)j =
∑

k

(M (O))j,k ck =
∑

k

〈Ogk, fj〉 ck =

=

〈
∑

k

ckOgk, fj

〉
=

〈
O
∑

k

ckgk, fj

〉
= 〈ODgk

c, fj〉

=⇒ ‖Mc‖2
2 =

∑

j

|〈ODgk
c, fj〉|2 ≤

≤ B′ · ‖ODgk
c‖2

H ≤ B′ · ‖O‖2
OpB ‖c‖2

2

2.)
O (M) = Dfk

◦M ◦ Cgk

=⇒ ‖O (M)‖H1→H2
≤ ‖Dfk

‖l2→H2
· ‖M‖l2→l2 · ‖Cgk

‖H1→l2 ≤

≤
√
B′ · ‖M‖l2→l2

√
B

2
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H1 H2
-

T

?

6

?

6

l2

Dgk
Cgk

Dfk
Cfk

l2-
M(gk,fk)(T )

Figure 1.2: Matrix and operator induced by each other

Definition 1.1.6 For an operator O and a matrix M like in theorem 1.1.22,
we call M(gk,fk)(O) the matrix induced by the operator O with respect
to the frames (gk) and (fk) and O(gk,fk)(M) the operator induced by the
matrix M with respect to the frames (gk) and (fk).

If we do not want to stress the dependency on the frames and there is no
change of confusion, the notation M(O) and O(M) will be used.

For frames we get

Proposition 1.1.23 Let (gk) be a frame in H1 with bounds A,B, (fk) in
H2 with A′, B′. Then

1. (
O(fk,gj) ◦M (f̃k,g̃j)

)
(O) = Id =

(
O(f̃k,g̃j) ◦M (fk,gj)

)
(O)

And so
O =

∑

k,i

〈
Og̃j, f̃k

〉
fk ⊗ gj

2. M(fk,gj) is injective and O(fk,gj) is surjective.

3. Let H1 = H2 and (gk) = (fk), then O(gk,g̃j)(Idl2) = IdH1

4. Let (hk) be any frame in H3, and O : H3 → H2 and P : H1 → H3.
Then

M(fq ,gp) (O ◦ P ) =
(
M(fp,hk) (O) · M(h̃k,gq) (P )

)

17



Proof: 1.)

(O ◦M) (O) (f) =
∑

k

(
∑

j

〈
Og̃j, f̃k

〉
〈f, gj〉

)
fk =

=
∑

j

(
∑

k

〈
Og̃j, f̃k

〉
fk

)
〈f, gj〉 =

∑

j

Og̃j 〈f, gj〉 = Of

For the other equality the roles of the frame and the dual are just switched.
2.) From OM = Id we know that M is injective and O is surjective.
3.)

O(Id)f =
∑

k

(
∑

j

δk,j 〈f, g̃j〉
)
gk =

∑

k

〈f, g̃k〉 gk = f

4.)

M(fq ,gp) (O ◦ P )p,q = 〈O ◦ Pgq, fp〉 =
〈
Pgq, O

∗f̃p

〉

On the other hand
(
M(fp,hk) (O) · M(h̃k,gq) (P )

)
p,q

=
∑

k

M(fp,hk) (O)p,k · M(h̃k,gq) (P )k,q =

=
∑

k

〈Ohk, fp〉
〈
Pgq, h̃k

〉
=
∑

k

〈
hk, O

∗f̃p

〉〈
Pgq, h̃k

〉
=

=

〈
∑

k

〈
Pgq, h̃k

〉
hk, O

∗f̃p

〉
=
〈
Pgp, O

∗f̃p

〉

2

As a direct consequence we get the following corollary.

Corollary 1.1.24 M(fk,f̃k) is a Banach-algebra monomorphism between the
algebra of bounded operators from H to H with ◦ and the (infinite) matrices
with the normal matrix-multiplication.

The other function O is in general not so ”well-behaved”. Again if the
dual frames are biorthogonal this is true, refer to the Section 1.1.8.

For the description of the Gram Matrix (cf. Section 1.1.9) and its behav-
ior (cf. [58]) it would be very interesting to look more closely at the class of
infinite matrix defining bounded operators. This is important to get sufficient
conditions for Bessel sequences. One well-known condition is Schur’s lemma,

18



refer to Lemma A.4.19. We will state another result in Section 1.2.3.1, where
we will look especially at Hilbert-Schmidt operators.

Let us give another look to the matrix induced by an operator O : H1 →
H2,

Lemma 1.1.25 Let O : H1 → H2 be a linear and bounded operator, (gk) ⊆
H1 and (fk) ⊆ H2 frames. Then M(fk,g̃j)(O) maps ran (Cgk

) into ran (Cfk
)

with
〈Of, gj〉 7→ 〈f, fk〉 .

If O is surjective respectively injective, then M(fk,g̃j)(O) is, too.

Proof: Let c ∈ ran(Cgk
), then there exists f ∈ H1 such that ck = 〈f, gk〉.

(
M(fk,g̃j)(O)(c)

)
i
=
∑

k

〈Og̃k, fi〉 〈f, gk〉 =

〈
∑

k

〈f, g̃k〉Ogk, fi
〉

= 〈Of, fi〉

So (〈f, gk〉)k 7→ (〈Of, fi〉)i.
If O is surjective, then for every f there exists a g such that Og = f , and

therefore 〈g, gk〉 7→ 〈f, fi〉.
If O is injective, then let’s suppose that 〈Of, fi〉 = 〈Og, fi〉. Because (fi)

is a frame =⇒ Of = Og =⇒ f = g =⇒ 〈f, gk〉 = 〈g, gk〉. 2

Particularly for O = Id the matrix Gfi,g̃k
= (〈g̃k, fi〉)k,i maps ran (Cgk

)
bijectively on ran (Cfk

). So we get a way to a way to ”switch” between
frames. For more on this kind of matrix we refer to Section 1.1.9.

Let us finish with some interesting examples:

Example 1.1.2 :

Let (gk) and (fk) be frames in H and δj the canonical basis of l2. Then

1. For S : H → H we have M(S) = Ggj
.

2. For S−1 : H → H we have M(S−1) = Gg̃j
.

3. For Cfl
: H → l2 we have

M(O)i,k = 〈Cfl
gk, δi〉 =

∑

l

〈gk, fl〉 δi,l = 〈gk, fi〉 = (Gfi,gk
)i,k

4. For Id : H → H we have M(Id) = Gf̃i,gk
.

5. For Id : l2 → l2 we have O(Id) = Sgk,f̃i
= Dfk

◦ Cg̃k
.
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1.1.7.4 Classification With ONBs

Frames can be described as images of an orthonormal basis by bounded
linear operators in an infinite dimensional Hilbert space. They can even be
classified by this result:

Proposition 1.1.26 ([23] 5.5.5) Let {ek}∞k=0 be an arbitrary infinite ONB
for H. The frames for H are precisely the families {Uek}, where U : H → H
is a bounded and surjective operator.

This operator is just the composition of an analysis and a synthesis op-
erator. U = Dfk

Cek
. From the application and finite dimensional space

viewpoint this proposition seems to be very strange and we will revisit this
statement in these circumstances in Proposition 1.2.5.

With the knowledge we have gained from Section 1.1.7.2 we can again
restate this result for Bessel and frame sequences:.

Corollary 1.1.27 Let {ek}∞k=0 be an arbitrary infinite ONB for H.

1. The Bessel sequences for H are precisely the families {Uek}, where
U : H → H is a bounded operator.

2. The frame sequences for H are precisely the families {Uek}, where U :
H → H is a bounded operator with closed range.

Proof: 1.) From Proposition 1.1.18 we know that U(ek) is a Bessel se-
quence, if U is a bounded operator. For the opposite direction let (fk) be
the Bessel sequence. Use U = Dfk

◦Cek
. This operator fulfills the condition.

2.) From Proposition 1.1.19 we know that U(ek) is a frame sequence, if
U is a bounded operator with closed range. For the opposite direction let
(fk) be the frame sequence. Use U = Dfk

◦ Cek
. Cek

is a bijection and Dfk

has close range 1.1.11, so U has closed range. 2

With Riesz bases, a class of sequences defined in the next section, this
classification can be extended, see 1.1.30.

From 1.1.26 we know now that every frame (fk) can be described as the
image of an surjective operator U of an arbitrary ONB (en), fk = Uek. So
as ONBs are tight frames with A = 1, we now know with Corollary 1.1.20:

Corollary 1.1.28 Let {ek}∞k=0 be an arbitrary infinite ONB for H. Let {fk}
be a Bessel sequence and let U be the bounded operator with U(ek) = fk, then

Sfk
= UU∗

20



1.1.8 Riesz Bases

Recall the following definitions from Section A.4.2.2:

Definition 1.1.7 1. A sequence {ek} is called a basis for H, if for all
f ∈ H there are unique ck such that

f =
∑

k

ckfk

2. Two sequences (gk), (fk) are called biorthogonal if

〈gk, hj〉 = δkj

For any basis there is a unique biorthogonal sequence, which also is a
basis [23], and so e.g. the following is true:

Lemma 1.1.29 Let (gk) be a basis of H and let (g̃k) be its unique biorthog-
onal sequence, then for all f, g ∈ H

〈f, g〉 =
∑

k

〈f, gk〉 〈g̃k, g〉

Proof: Use for f and g the expansion to the bases (gk) and (g̃k) respectively.
2

Compare to the equivalent property for frames in Proposition 1.1.10.

Proposition 1.1.30 ([23] 3.6.6.) Let (gk) be a sequence in H. Then the
following conditions are equivalent:

1. (gk) is an image of an ONB (ek) under an invertible bounded operator
T ∈ B(H).

2. (gk) is complete in H and there exist constants A, B > 0 such that the
inequalities

A ‖c‖2
2 ≤

∥∥∥∥∥
∑

k∈K
ckgk

∥∥∥∥∥

2

H

≤ B ‖c‖2
2

hold for all finite sequences c = {ck}.

3. (gk) is complete in H and the Gram Matrix G, given by Gjm =
〈gm, gj〉 j,m ∈ K (cf. Section 1.1.9 ) defines a bounded invertible
operator on l2(K). (It is, even more, a positive operator.)
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4. (gk) is a complete Bessel sequence in H and it has a complete biorthog-
onal sequence (fk), which is also a Bessel sequence.

Definition 1.1.8 If a sequence fulfills the conditions in 1.1.30 it is called
a Riesz bases. A sequence (gk) that is a Riesz basis only for span(gk) is
called a Riesz sequence.

Proposition 1.1.30 Point 2.) leads directly to

Corollary 1.1.31 Every subfamily of a Riesz basis is a Riesz sequence.

Clearly Riesz bases are bases, and from property 1 above and 1.1.26 it is
evident that Riesz basis are frames. In this case the Riesz bounds coincide
with the frame bounds. But when are frames Riesz Bases? We can state the
following equivalent conditions found in [23] (6.1.1) and [63] (5.1.5).

Theorem 1.1.32 Let {gk} be a frame for H. Then the following conditions
are equivalent:

1. (gk) is a Riesz basis for H.

2. The coefficients (ck) ∈ l2 for the series expansion with (gk) are unique.
So the synthesis operator D is injective.

3. The analysis operator C is surjective.

4. (gk) is an exact frame.

5. (gk) is minimal (meaning gj 6∈ span(gk)k 6=j for all j) (cf. Definition
A.4.7).

6. (gk) has a biorthogonal sequence.

7. (gk) and (S−1gk) are biorthogonal.

8. (gk) is a basis.

This clearly means, that if the frame is a Riesz Basis, then the analysis
and synthesis operators are bijections. As the coefficients are unique, clearly
0 6∈ {gk}. As any Riesz basis is minimal, we see from 1.1.16 that for Riesz
bases A ≤ ‖gl‖2. That’s another reason why 0 cannot be an element of a
Riesz basis.

There is an equivalence condition, when a sequence is a Riesz basis. For
that we need the following definition

22



Definition 1.1.9 A sequence (fk) is called semi-normalized if it fulfills

0 < inf
k
‖fk‖H ≤ sup

k
‖fk‖H <∞

Lemma 1.1.33 ([23] 3.6.2) A sequence (fk) is a Riesz basis for H if and
only if it is a semi-normalized, unconditional basis.

Bounds for the norm of the elements of Riesz bases are exactly the frame
bounds.

Corollary 1.1.34 Let (gk) be a Riesz basis with bounds A and B. Then for
all k √

A ≤ ‖gk‖H ≤
√
B

Proof: The upper bound follows from Lemma 1.1.1.
For the lower bound we know for the dual frame that

∑

k

∣∣∣
〈
f, f̃k

〉∣∣∣
2

≤ 1

A
· ‖f‖2

H

Therefore for a fixed i

1 =
∑

k

∣∣∣
〈
fi, f̃k

〉∣∣∣
2

≤ 1

A
· ‖fi‖2

H

2

The coefficients using a Riesz Basis are unique, so 1.1.22 can be extended
to:

Theorem 1.1.35 Let (fk) be a Riesz basis for H1, (gk) for H2. The func-

tions M(fk,gk) and O(f̃k,g̃k) between the set of bounded linear operator from H1

to H2, B(H1,H2) and the infinite matrices, which induce bounded operators
from l2 to l2, defined in 1.1.22, are bijective. M(fk,gk) and O(fk,gk) are inverse
functions. The identity is mapped on the identity by M(fk,gk) and O(fk,gk).

M(fk,f̃k) and O(fk,f̃k) are Banach algebra isomorphisms between the alge-
bra of bounded operators H1 → H1 and the infinite matrices, which induce
bounded operators from l2 to l2.

Proof: We know that O ◦M = Id. Let’s look at

(M◦O) (M)p,q = M
(
∑

k

∑

j

Mk,j 〈·, g̃j〉 fk
)

p,q

=
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=

〈
∑

k

∑

j

Mk,j 〈gq, g̃j〉 fk, f̃p
〉

=
∑

k

∑

j

Mk,j 〈gq, g̃j〉︸ ︷︷ ︸
δk,p

〈
fk, f̃p

〉

︸ ︷︷ ︸
δk,p

= Mp,q

So these functions are inverse to each other and therefore bijective.

M(IdH→H)p,q = 〈Idgq, g̃p〉 = 〈gq, g̃p〉 = δq,p = Idl2→l2

We know that M(fk,f̃k) is a Banach algebra homomorphism and so its
inverse is, too.

2

If the frame is tight, we clearly see from Theorem 1.1.22 that these func-
tions are isometric. To get isometric isomorphism we have to use tight Riesz
bases. We will see in 1.1.11.1 that such frames are just rescaled orthonormal
bases (with fixed scale).

The proposition 1.1.26 can be very easily be extended to Riesz Bases.

Proposition 1.1.36 Let (en) with n ∈ I be an arbitrary Riesz basis for the
infinite dimensional H. The frames for H are precisely the families {Uek},
where U : H → H is a bounded and surjective operator.

Proof:
Let (en), n ∈ I be a (countable) Riesz basis for H, and let (δn) be the

canonical basis for l2(I). If we look at C(en) the analysis operator of the frame
(en), then clearly the operator defined by U := D(fk) ◦ C(en) is a surjective
bounded operator. And from 1.1.32 we know that C(en) = δn, so U(en) = fn.

On the other side U(en) is clearly a frame, see 1.1.17. 2

If we want to have a classification of frames by operators, it’s more useful
to do that with a smaller class. So it is preferable to stick to orthonormal
bases here.

1.1.9 Gram Matrix

We have mentioned the Gram matrix before. Let us repeat

Definition 1.1.10 Let {gk} and {g′k} be two sequences in H. The cross-
Gram matrix Ggk,g

′

k
for these sequences is given by

(
Ggk,g

′

k

)
jm

= 〈g′m, gj〉,
j,m ∈ K.

If (gk) = (g′k) we call this matrix the Gram matrix Ggk
.
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We can look at the operator induced by the Gram matrix, defined for
c ∈ l2 formally as

(Ggk,g
′

k
c)j =

∑

k

ck 〈g′k, gj〉

Clearly for two Bessel sequences it is well defined, as

((
Cgk

◦Dg′
k

)
c
)
j
=

〈
∑

k

ckg
′
k, gj

〉
=
∑

k

ck 〈g′k, gj〉 = (Ggk,g
′

k
c)j

and therefore ∥∥Ggk,g
′

k

∥∥
Op

≤ ‖Cgk
‖Op

∥∥Dg′
k

∥∥
Op

≤ B

1.1.9.1 Classification With The Gram Matrix

Let us state the connection between the kind of sequence and the Gram
matrix:

Theorem 1.1.37 Let (gk) be a sequence in H and let G be its Gram matrix.
Then

1. The Gram Matrix defines G a bounded function from l2 into l2 if and
only if the sequence (gk) is a Bessel sequence. In this case the Gram
matrix defines an injective operator from RC to RC. The range of G is
dense in RC. The operator norm of G is the optimal Bessel bound.

2. The Gram Matrix defines a bounded operator from RC onto RC with
bounded inverse if and only if the sequence (gk) is a frame sequence.

3. The Gram Matrix G defines an bounded, invertible operator on l2 if
and only if the sequence (gk) is a Riesz sequence.

Proof: 1.) See [23] 3.5.1. and 3.5.2.
2.) For one direction, (gk) is a frame sequence, see [23] 5.2.2.

For the other direction, suppose that G is bounded invertible on RC .
With A.4.6 it is enough to show that C−1 : ran(C) → H is bounded. C−1 =
C† ∣∣

ran(C) . So

C−1 = C† ∣∣
ran(C)

A.4.45
= C∗ (CC∗)−1 =

= D (CD)−1 = D (CD)−1 = DG−1

Therefore

∥∥C−1
∥∥
ran(C)→H =

∥∥DG−1
∥∥
ran(C)→H ≤ ‖D‖l2→H

∥∥G−1
∥∥
ran(C)→ran(C)
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3.) See Proposition 1.1.30. 2

In [58] decay properties of the Gram matrix are investigated. As can be
seen from the above theorem this can be useful for sufficient conditions for
sequences being a Bessel sequence.

Connected to the last property, we can prove a result stated in [58] and
extend it to Bessel and frame sequences

Lemma 1.1.38 1. Let (gk) be a Bessel sequence, then ker(G) = ker(D) =
ran(C)⊥.

2. Let (gk) be a frame sequence, then ran(C) = ran(G) = ker(D)⊥

Proof: 1.) From 1.1.37 we know ker(D) ⊆ ker(G) as G = C ◦ D. G is
injective on ran(C), this means that ran(C) ⊆ ker(G)⊥. So

ran(C)⊥ ⊇ ker(G) =⇒ ker(D) ⊇ ker(G) =⇒ ker(D) = ker(G)

2.) Follows directly from 1.1.37 as G is surjective on ran(C) and ran(G) ⊆
ran(C).

2

1.1.9.2 Properties Of The Cross-Gram-Matrix

Let us look at a figure, Figure 1.3, where we see the connection of the different
operators and the cross-Gram matrix in a commutative function diagram.
There a lot of properties can be seen, like stated in the following lemma.

Lemma 1.1.39 Let (gk) and (g′k) be Bessel sequences. Then

Sg′
k
◦Dgk

= Dg′
k
◦Gg′

k
gk

Sgk
◦ Sg′

k
= Dgk

◦Ggk,g
′

k
◦ Cg′

k

We can link the bound of the Gram matrix with the frame bounds:

Proposition 1.1.40 Let (ek) be an ONB for H, (fk) = (Uek) be a Bessel
sequence, and let G : l2 → l2 be the Gram matrix for (fk). The optimal
Bessel bound for this sequence is

Bopt = ‖U‖2 = ‖G‖
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Figure 1.3: Gram matrix for Bessel sequences

Furthermore if (fk) is a frame, then the optimal lower frame bound is

Aopt =
∥∥U †∥∥−2

=
1

‖G†‖

Proof: Look at Figure 1.3, set gk and lk to ek, as well as fk and hk in the
picture to the fk here. Then we know that

Dek
◦Gfk

◦ Cek
= Sfk,ek

◦ Sek,fk
= U∗U

But as (ek) is an ONB and so Dek
and Cek

are isometries (and Dek
is surjec-

tive) (see Lemma A.3.6 and Proposition A.4.14)

‖Gfk
‖ = ‖Dek

◦Gfk
◦ Cek

‖ = ‖U∗U‖ = ‖U‖2

Finally we know from Corollary 1.1.28 that UU∗ = Sfk
and from Theorem

1.1.13 that Bopt = ‖Sfk
‖ and so

Bopt = ‖UU∗‖ = ‖U∗U‖ = ‖U‖2 = ‖G‖

For the optimal lower frame bound use the dual frame with Theorem
1.1.7 and Lemma 1.1.47. 2

Compare to [23] Prop. 3.6.8., where this is stated for Riesz bases and an
estimation for the lower Riesz bound.

Let us finish this section with a connection between the inner products
of H and l2
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Lemma 1.1.41
〈f, g〉H = 〈Gg̃k

Cgk
(f), Cgk

(g)〉l2
Proof: From figure 1.3 it is clear that Gg̃Cg = Cg̃ and so

〈f, g〉H
1.1.10
=
∑

k

〈f, g̃k〉H 〈g, gk〉H = 〈Cg̃k
(f), Cgk

(g)〉l2 = 〈Gg̃k
Cgk

(f), Cgk
(g)〉l2

2

Lemma 1.1.42 Let O : H1 → H2 be a linear and bounded operator, (gk) ⊆
H1 and (fk) ⊆ H2 frames. Then M(fk,g̃j)(O) maps ran (Cgk

) into ran (Cfk
)

with
〈f, gj〉 7→ 〈Of, fk〉 .

If O is surjective respectively injective, then M(fk,g̃j)(O) is, too.

Proof: Let c ∈ ran(Cgk
), there exists f ∈ H1 such that ck = 〈f, gk〉.

(
M(fk,g̃j)(O)(c)

)
i
=
∑

k

〈Og̃k, fi〉 〈f, gk〉 =

〈
∑

k

〈f, g̃k〉Ogk, fi
〉

= 〈Of, fi〉

So (〈f, gk〉)k 7→ (〈Of, fi〉)i.
If O is surjective, then for every f there exists a g such that Og = f , and

therefore 〈g, gk〉 7→ 〈f, fi〉.
If O is injective, suppose that 〈Of, fi〉 = 〈Og, fi〉. Because (fi) is a frame

=⇒ Of = Og =⇒ f = g =⇒ 〈f, gk〉 = 〈g, gk〉. 2

Particularly for O = Id the matrix Gfi,g̃k
= (〈g̃k, fi〉)k,i maps ran (Cgk

)
bijectively on ran (Cfk

). This can be seen as a way to ”‘switch”’ between
frames. For more information on this kind of matrix, see the Section 1.2.1.4.

1.1.9.3 The Cross Gram Matrix Of A Frame And Its Dual

From the Examples 1.1.2 it is to be expected that the matrix Ggk,g̃i
has very

special properties. For example the following.

Lemma 1.1.43 Let (gk) be a frame in H. Then

1. Ggk,g̃k
is self-adjoint.

2. Ggk,g̃k
= Gg̃k,gk
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3. Ggk,g̃k
= Ggk

◦Gg̃k

Proof:
1.) & 2.)

(Ggk,g̃k
)j,i =

(〈
S−1
g gi, gj

〉)
j,i

=
(〈
gi, S

−1
g gj

〉)
j,i

=
(〈
S−1
g gj, gi

〉)
j,i

As S−1
gk

= Sg̃k
, this operator is self-adjoint and so (Ggk,g̃k

)j,i = (Gg̃k,gk
)j,i and

both these matrices are self-adjoint
3.)

Ggk,g̃k
= Cgk

◦Dg̃k
= Cgk

◦Dgk
◦ Cg̃k

◦Dg̃k
= Ggk

◦Gg̃k

2

From Lemma 1.1.42 we know that this matrix maps onto ran(Cgk
). Even

more it is the orthogonal projection from l2 to ran(Cgk
) as stated in

Lemma 1.1.44 ([23] 5.3.6) Let (fk) be a frame sequence, then the orthogonal
projection P from l2 onto ran(C) is given by

Q(ck) =

(〈
∑

l

clS
−1fl, fj

〉)

j

= Gf̃l,fl
c

1.1.10 Frames And The Pseudoinverse

We can collect a lot of possible descriptions of the pseudoinverse of the syn-
thesis operator or the Gram matrix of a frame, refer to [21].

From Proposition 1.1.9 and Proposition A.4.46 we can deduce the follow-
ing property as both operators are the minimal norm solutions of Dfk

h = c.

Proposition 1.1.45 Let {fk} be a frame for H, then

D†
fk

= Cf̃k

This result can also be found in [21]. A direct consequence from this
result and Lemma A.4.45 is

Corollary 1.1.46 Let {fk} be a frame for H, then

C†
fk

= Df̃k

Let us state some more results from [21]:

Lemma 1.1.47 ( [21] ) Let (fk) be a frame for H.
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1. Let Mi,j =
〈
D†ej, ai

〉
be the matrix for D† for the ONBs (ei) ⊆ H and

(aj) ⊆ l2. Then

S−1fk =
∑

i

Mi,jei

2.
G†
fk

= Gf̃k

From 2.) we can directly deduce a property similar to 1.) :

Corollary 1.1.48 Let (gk) be a frame for H. Then the coefficients of the
dual frame in the frame expansion are the entries of the pseudo-inverse of
the Gram matrix.

g̃j =
∑

k

(
G†)

k,i
gk

Proof: Clearly

g̃j =
∑

k

〈g̃j, g̃k〉 gk =
∑

k

(Gg̃k
)k,i gk =

∑

k

(
G†
gk

)
k,i
gk

2

In applications this relationship can be used to calculate the dual frame.

Corollary 1.1.49
Ggk,g̃k

= G†
gk
Ggk

Proof: This is just a combination of the second point of Lemma 1.1.47 and
Lemma 1.1.43. 2

In [58] this property is extended to

Lemma 1.1.50 ([58] Lemma 3.1)

Gg̃k
=
(
G†
gk

)2
Ggk

We can now find several different possibilities to describe the pseudoin-
verse of the synthesis operator of a frame:

Proposition 1.1.51 Let (gk) be a frame on H.

D†
gk

= Cgk
S−1
gk

= Gg̃k,gk
Cg̃k

= G†
gk
Cgk
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Proof:
D†
gk

= Cg̃k
= Cg̃k

Dg̃k
Cgk

= Gg̃k
Cgk

= G†
gk
Cgk

D is surjective, so

D†
gk

= D∗
gk

(
Dgk

D∗
gk

)−1
= Cgk

(Dgk
Cgk

)−1 = Cgk
S−1
gk

=

= Cgk
Sg̃k

= Cgk
Dg̃k

Cg̃k
= Ggk,g̃k

Cg̃k

2

1.1.10.1 Best Approximation By Frame Sequences

In applications we very often have the problem to find an approximation of a
certain object, for example finding the Gabor multiplier which approximates
a given matrix, see Section 2.7.3. In a Hilbert space setting, where the
interesting objects are in a space spanned by a frame sequence, Proposition
1.1.14 gives the right tool for this problem, because then we know that the
best approximation is just the orthogonal projection on this space, which is
given by

P (f) =
∑

k

〈f, g̃k〉 gk = (∗)

A disadvantage of this formula for practical solutions is that the dual
frame has to be calculated. This can be time-consuming and is not needed
per-se. But we can use the formulas we have established previously to get

(∗) = Dgk
Cg̃k

= Dgk
D†
g̃k

= Dgk
G†
gk
Cgk

Here we can avoid calculating the dual frame directly, instead using the
existing algorithm to calculate the pseudoinverse.

Theorem 1.1.52 Let (gk) be a frame sequence in H. Let V = span(gk).
The best approximation of an arbitrary element f ∈ H is

P (f) = Dgk
G†
gk
Cgk

f

See Section 1.3.9 for an application with frame multiplier.
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1.1.11 Tight Frames

Tight frames are very attractive, as the dual frame can be easily calculated
via g̃k = 1

A
· gk. This is because we know that AI ≤ S ≤ BI and so for a

tight frame we have S = AI.
We are using the term normalized for a sequence (fk) where ‖fk‖H = 1,

in accordance with the definition semi-normalized, see Definition 1.1.9. This
is sometimes used in the literature in connection with tight frames for the
case where A = 1. Another, more precise, name for a tight frame with bound
A = 1 is Parseval frame, cf. [6], as this kind of frame fulfills the Parseval
equation, cf. Theorem A.4.11.

Lemma 1.1.53 ([63], Lemma 5.1.6.(a)) Let {gk} be a tight normalized frame
with the frame bound 1. Then {gk} is an ONB.

We’ll repeat the proof for insight:
Proof:

‖f‖2 =
∑

k

|〈f, gk〉|2 ∀f =⇒

For any l

‖gl‖2 =
∑

k

|〈gl, gk〉|2 = |〈gl, gl〉|2 +
∑

k 6=l
|〈gl, gk〉|2 = ‖gl‖4 +

∑

k 6=l
|〈gl, gk〉|2

1 = 1 +
∑

k 6=l
|〈gl, gk〉|2

=⇒ 0 =
∑

k 6=l
|〈gl, gk〉|2 =⇒ 〈gl, gk〉 = 0 ∀k 6= l

2

If we have a frame for H, we can find a tight frame by:

Lemma 1.1.54 ([63], Lemma 5.1.6.(b)) Let {gk} be a frame. Then {S−1/2gk}
is a tight frame with A = 1.

S−1/2 can be defined as S is positive.
As mentioned above a tight frame with the bound A = 1 is called Parse-

val frame. It is also called a self-dual frame as this is equivalent to S = Id
and g = g̃.

We can show:
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Lemma 1.1.55 Let {gk} be a tight frame with the frame bound A. Then{
gk√
A

}
is a tight frame with frame bound 1.

Proof: The frame bound A > 0.

A · ‖f‖2 =
∑

k

|〈f, gk〉|2 =⇒

∑

k

∣∣∣∣
〈
f,

gk√
A

〉∣∣∣∣
2

=
∑

k

∣∣∣∣
1√
A

∣∣∣∣
2

|〈f, gk〉|2 =
1

A

∑

k

|〈f, gk〉|2 =
1

A
·A·‖f‖2 = ‖f‖2

2

Another fact, which is different to what might be expected from experi-
ence with orthonormal bases and finite dimensional spaces is that we know
that in every separable H there exists a tight frame, which is norm bounded
below and does not contain a basis. This was shown in [23] 6.4.2. basis. This
was shown in [23] 6.4.2.

1.1.11.1 Exact Tight Frames

Let us now analyze exact and tight frames. This should be very near to
an ONB. Every ONB is clearly both exact and tight. If an ONB is part of
the sequence, then due to the minimality this has to be already the whole
sequence. We know that the exact frames are the Riesz bases. ONBs with
constant factors, a · ONB, are clearly tight and exact. But this already
includes all possible cases.

Corollary 1.1.56 The exact, tight frames are exactly the ONBs scaled by a
fixed scalar a 6= 0. (gk) = (a · ek) where (ek) is an ONB.

Proof: From 1.1.16 we get that A = B ≥ ‖gl‖2 and because the frame is
exact and minimal A ≤ ‖gl‖2. Therefore ‖gl‖2 = A for all l.

Following 1.1.55 g̃l = gl√
A

form a tight frame with frame bounds 1. ‖g̃l‖2 =
1. So by 1.1.53 g̃l form an ONB. 2

This result can also be deduced from 1.1.53.

Let us now look at an ONB multiplied not by one constant but by a semi-
normalized sequence 0 < a < |λk| < b. Then the sequence (λkek) is clearly
not tight in general as

∑
k

|〈ei, λkek〉|2 = |λi|2 ‖ei‖H. Clearly this sequence is

a frame, but does it also stay a Riesz basis? This leads us directly to the
questions in the next section.
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1.1.12 Perturbation Of Frames

Lemma 1.1.57 Let {λk} be a semi-normalized sequence, Then if {gk} is a
Bessel sequence, frame or Riesz basis with bounds A and B, {λk · gk} is also
one with bounds a2 · A and b2 ·B.

Proof:
|〈f, ckgk〉|2 = |ck|2 |〈f, gk〉|2

=⇒
∑

k

|〈f, ckgk〉|2 =
∑

k

|ck|2 |〈f, gk〉|2 = (∗)

(∗) ≤ b2
∑

k

|〈f, gk〉|2 ≤ b2B ‖f‖2

(∗) ≥ a2
∑

k

|〈f, gk〉|2 ≥ a2A ‖f‖2

If {gk} is a Riesz basis, then we know now that {λk · gk} is a Bessel
sequence. So we only have to show that Dλkgk

is injective. Let

Dλkgk
(c) = Dλkgk

(d) =⇒
∑

k

ckλk · gk =
∑

k

dkλk · gk

=⇒ ckλk = dkλk =⇒ ck = dk

2

The standard question of perturbation theory is whether the frame related
properties of a sequence is shared with ’similar’ sequences.

Theorem 1.1.58 ([23] Theorem 15.1.1.) Let (fk)
∞
k=1 be a frame for H. Let

(gk)
∞
k=1 be a sequence in H. If there exist λ, µ ≥ 0 such that λ+ µ√

A
< 1 and

∥∥∥∥∥
∑

k

ck (fk − gk)

∥∥∥∥∥
H

≤ λ

∥∥∥∥∥
∑

k

ckfk

∥∥∥∥∥
H

+ µ ‖c‖l2

for all finite scalar sequences c, then (gk) is a frame with bounds

A

(
1 −

(
λ+

µ√
A

))2

, B

(
1 + λ+

µ√
B

)2

Moreover if (fk) is a Riesz bases, (gk) is, too.

This can easily formulated for Bessel sequences using parts of the proofs
in [23]:
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Lemma 1.1.59 Let (fk)
∞
k=1 be a Bessel sequence for H. Let (gk)

∞
k=1 be a

sequence in H. If there exist λ, µ ≥ 0 such that
∥∥∥∥∥
∑

k

ck (fk − gk)

∥∥∥∥∥
H

≤ λ

∥∥∥∥∥
∑

k

ckfk

∥∥∥∥∥
H

+ µ ‖c‖l2

for all finite scalar sequences c, then (gk) is a Bessel sequence with bound

B

(
1 + λ+

µ√
B

)2

Proof: Let c be a finite sequence, then
∥∥∥∥∥
∑

k

ckgk

∥∥∥∥∥
H

≤
∥∥∥∥∥
∑

k

ckfk +
∑

k

ck (gk − fk)

∥∥∥∥∥
H

≤

≤
∥∥∥∥∥
∑

k

ckfk

∥∥∥∥∥
H

+

∥∥∥∥∥
∑

k

ck (gk − fk)

∥∥∥∥∥
H

≤
∥∥∥∥∥
∑

k

ckfk

∥∥∥∥∥
H

+λ

∥∥∥∥∥
∑

k

ckfk

∥∥∥∥∥
H

+µ ‖c‖l2 =

Th.1.1.3
=

(√
B ‖c‖2

)
· (1 + λ) + µ ‖c‖2

For infinite sequences we know that for m > n
∥∥∥∥∥

m∑

k=1

ckgk −
n∑

k=1

ckgk

∥∥∥∥∥
H

=

∥∥∥∥∥

m∑

k=n+1

ckgk

∥∥∥∥∥
H

≤

≤ (1 + λ)

∥∥∥∥∥

m∑

k=n+1

ckfk

∥∥∥∥∥
H

+ µ

√√√√
m∑

k=n+1

|ck|2

The first term is convergent because (fk) is a Bessel sequence, the second

because c ∈ l2. Therefore
n∑
k=1

ckgk is a Cauchy sequence and therefore con-

vergent. So (gk) is a Bessel sequence.
With Theorem 1.1.11, we know that

(√
B · (1 + λ) + µ

)2

= B

(
1 + λ+

µ√
B

)2

is a Bessel bound. 2

For frame sequence an equivalent statement is not possible as can be seen
in [23] Example 15.3.1. But for Riesz sequence it is possible to formulate
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Theorem 1.1.60 ([23] Theorem 15.3.2.) Let (fk)
∞
k=1 be a Riesz sequence

in H. Let (gk)
∞
k=1 be a sequence in H. If there exist λ, µ ≥ 0 such that

λ+ µ√
A
< 1 and

∥∥∥∥∥
∑

k

ck (fk − gk)

∥∥∥∥∥
H

≤ λ

∥∥∥∥∥
∑

k

ckfk

∥∥∥∥∥
H

+ µ ‖c‖l2

for all finite scalar sequences c, then (gk) is a Riesz sequence with bounds

A

(
1 −

(
λ+

µ√
A

))2

, B

(
1 + λ+

µ√
B

)2

We can specialize and rephrase Theorem 1.1.58, Lemma 1.1.59 and Theo-
rem 1.1.60. For that let us denote the normed vector space of finite sequences
in l2 by c2c = (cc, ‖.‖2).

Proposition 1.1.61 Let (fk) be a Bessel sequence, frame, Riesz sequence or
Riesz basis for H. Let (gk) be a sequence in H. If there exists µ such that

‖Dfk
−Dgk

‖c2c→H ≤ µ <
√
A

then gk is a Bessel sequence with bound

B

(
1 +

µ√
B

)2

respectively a frame or Riesz basis with bounds

A

(
1 − µ√

A

)2

, B

(
1 +

µ√
B

)2

and
‖Dfk

−Dgk
‖l2→H ≤ µ

If (fk) is a Riesz basis, (gk) is, too.

Proof: For every c ∈ cc

‖(Dfk
−Dgk

) c‖H ≤ ‖Dfk
−Dgk

‖Op ‖c‖2 ≤ µ ‖c‖2

This is just the condition in Theorem 1.1.58 respectively Lemma 1.1.59 with
λ = 0 and µ <

√
(A), so that λ+ µ√

A
< 1.
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Because gk is a Bessel sequence, we know that Dgk
: l2 → H is well

defined. Because c2c is dense in l2, therefore

‖Dfk
−Dgk

‖l2→H = ‖Dfk
−Dgk

‖c2c→H ≤ µ

2

This also means

Corollary 1.1.62 Let (fk) be a Bessel sequence, frame, Riesz sequence re-

spectively Riesz basis and (g
(n)
k ) sequences with

∥∥∥D
g
(n)
k

−Dfk

∥∥∥
c2c→H

→ 0

for n → ∞. Then there exists an N such that (g
(n)
k ) are Bessel sequences,

frames, Riesz sequences respectively Riesz bases for n ≥ N . For the optimal
upper frame bounds B

(n)
opt → Bopt. And

∥∥∥D
g
(n)
k

−Dfk

∥∥∥
l2→H

→ 0

for n→ ∞.

Proof: The first property is a direct consequence from Proposition 1.1.61.
For all ǫ > 0 there is an N such that for all n ≥ max{N(ǫ), N(A)}

∥∥∥D
g
(n)
k

∥∥∥
Op

≤ ‖Dfk
‖Op +

∥∥∥Dfk
−D

g
(n)
k

∥∥∥
Op

≤ B + ǫ

2

We will use this result in Section 1.3 and Section 2.3.

A simple way to measure the similarity of two frames would be in a
uniform sense, using the supremum of ‖gk − fk‖H, but this is not a good
measure in general for frames and related sequences.

Example 1.1.3 :

Let (δi)j = δi,j be the standard basis of l2 and consider the sequence

(
e
(δ)
i

)
j
=





δ j < i
1 j = i
0 otherwise
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Clearly
∥∥∥δk − e

(δ)
k

∥∥∥
∞

= δ. But this sequence cannot be a frame because
∥∥∥e(δ)i

∥∥∥
2

= (i− 1) δ + 1 → ∞ and therefore it cannot have an upper bound.

But it is rather easy to show that if another similarity measure is used
for the frame elements the frame property is kept:

Corollary 1.1.63 Let (gk) be a Bessel sequences, frame, Riesz sequence re-
spectively a Riesz basis. Let (fk) be a sequence with

∑

k

‖gk − fk‖2
H < A

then (fk) is a Bessel sequences, frame, Riesz sequence or Riesz basis.

If (f
(l)
k ) are sequences such that for all ǫ there exists an N(ǫ) with

∑

k

∥∥∥gk − f
(l)
k

∥∥∥
2

H
< ǫ

for all l ≥ N(ǫ), then (fk)
(l) is a Bessel sequences, frame, Riesz sequence

respectively a Riesz basis for all l ≥ N(A) and for all l > max{N(ǫ), N(A)}
with the optimal upper frame bound B

(l)
opt → Bopt. And

∥∥∥C
f
(l)
k

− Cgk

∥∥∥
Op
< ǫ

∥∥∥D
f
(l)
k

−Dgk

∥∥∥
Op
< ǫ

and for all l > max {N(ǫ), N(A), N(1)}
∥∥∥S

f
(l)
k

− Sgk

∥∥∥
Op
< ǫ ·

(√
B + 1 ·

√
B
)
.

Proof: Let c ∈ Cc, then

‖Dfk
c−Dgk

c‖H ≤
∥∥∥∥∥
∑

k

ck (fk − gk)

∥∥∥∥∥
H

≤
∑

k

|ck| ‖gk − fk‖H ≤

√∑

k

|ck|2
√∑

k

‖gk − fk‖2
H

=⇒ ‖Dfk
−Dgk

‖Op ≤
√∑

k

‖gk − fk‖2
H
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So in the first case ‖Dfk
−Dgk

‖Op <
√
A and therefore (fk) forms a Bessel

sequence, frame, Riesz sequence or Riesz basis.

In the second case we get
∥∥∥D

f
(l)
k

−Dgk

∥∥∥
Op
< ǫ.

∥∥∥C
f
(l)
k

f − Cgk

∥∥∥
Op

=
∥∥∥D∗

f
(l)
k

−D∗
gk

∥∥∥
Op

=
∥∥∥D

f
(l)
k

−Dgk

∥∥∥
Op
< ǫ

∥∥∥S
f
(l)
k

− Sgk

∥∥∥
Op

=
∥∥∥D

f
(l)
k

◦ C
f
(l)
k

−Dgk
◦ Cgk

∥∥∥
Op

=

=
∥∥∥D

f
(l)
k

◦ C
f
(l)
k

−D
f
(l)
k

◦ Cgk
+D

f
(l)
k

◦ Cgk
−Dgk

◦ Cgk

∥∥∥
Op

≤

≤
∥∥∥D

f
(l)
k

∥∥∥
Op

∥∥∥C
f
(l)
k

− Cgk

∥∥∥
Op

+
∥∥∥D

f
(l)
k

−Dgk

∥∥∥
Op

‖Cgk
‖Op = (∗)

Due to Corollary 1.1.62 there is an N(1) such that for all l ≥ N(1)

∥∥∥D
f
(l)
k

∥∥∥
Op

≤
√
B + 1

and so
(∗) ≤

√
B + 1ǫ+ ǫ

√
B = ǫ ·

(√
B + 1 ·

√
B
)

2

Because for all sequences ‖c‖1 ≥ ‖c‖2 a corresponding property is true in
an l1-sense:

Corollary 1.1.64 Let (gk) be a Bessel sequences, frame, Riesz sequence re-
spectively a Riesz basis. Let (fk) be a sequence with

∑

k

‖gk − fk‖H < A

then (fk) is a Bessel sequences, frame, Riesz sequence or Riesz basis.

If (f
(l)
k ) are sequences such that for all ǫ there exists an N(ǫ) with

∑

k

∥∥∥gk − f
(l)
k

∥∥∥
H
< ǫ

for all l ≥ N(ǫ), then (fk)
(l) is a Bessel sequences, frame, Riesz sequence

respectively a Riesz basis for all l > max{N(ǫ), N(A)} and the optimal upper

frame bound B
(l)
opt → Bopt for l → ∞ .

∥∥∥C
f
(l)
k

− Cgk

∥∥∥
Op
< ǫ
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∥∥∥D
f
(l)
k

−Dgk

∥∥∥
Op
< ǫ

and for all l > max{N(ǫ), N(A), N(1)}
∥∥∥S

f
(l)
k

− Sgk

∥∥∥
Op
< ǫ ·

(√
B + 1 ·

√
B
)
.
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1.2 Frames And Finite Dimensional Spaces

1.2.1 Frames In Finite Dimensional Spaces

As mentioned above the typical properties of frames can be understood more
easily in the context of finite-dimensional vector spaces. Let us gather some
results from [23], letting V denote a finite dimensional space with dimension
N .

Proposition 1.2.1 ([23] 1.1.2) Let (fk)
M
k=1 be a sequence in V . Then it is

a frame for span{fk}.

So in finite dimensional spaces all finite sequences that span the whole space
are exactly the finite frames. Clearly sequences that are Riesz bases are linear
independent and so are bases.

A result dealing with the eigenvalues of the frame operator is the following

Proposition 1.2.2 ([23] 1.2.1 & 1.2.2)Let (fk)
M
k=1 be a frame for V . Then

1. The optimal lower frame bound is the smallest eigenvalue of S, and the
optimal upper frame bound is the largest eigenvalue.

2. Let (λk) denote the sequence of eigenvalues of S. Then

n∑

k=1

λk =
M∑

k=1

‖fk‖2
Cn

3. The condition number of S is χ(S) = Bopt

Aopt
.

The convergence of the sum
∑
k

‖fk‖2
CN will again be investigated later in

this section. For finite frames this sum is certainly finite. For infinite frames
the question whether this sum is convergent will be answered in Section 1.2.2.
In the next section we deal with finite dimensional spaces, and if there are
frames for such spaces with infinite many elements.

1.2.1.1 An Example Of An Infinite Frame In An Finite Dimen-
sional Space

The finite sequences that span the whole space are not the only frames. There
are also frames with infinite many elements in finite dimensional spaces.

Example 1.2.1 :
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1. Take a basis (ei|i = 1, .., N) in CN and let e
(l)
k = 1

l
· ek for l = 1, 2, ...

Then (e
(l)
k ) is a tight frame, as

∑

k,l

∣∣∣
〈
f, e

(l)
k

〉∣∣∣
2

=
∞∑

l=1

N∑

k=1

∣∣∣∣
〈
f,

1

l
· ek
〉∣∣∣∣

2

=

=
∞∑

l=1

1

|l|2
N∑

k=1

|〈f, ek〉|2 =
∞∑

l=1

1

|l|2
‖f‖H = ‖f‖H · π

2

6

So S−1e
(l)
k = 6

π2 e
(l)
k .

2. The same is possible for e
(l)
k = 1

l2
·ek for l = 1, 2, ... This is again a tight

frame with the bound A = π4

90
.

It seems rather ”strange” to use infinitely many elements for a frame
in a finitely dimensional space, but these examples are a good tool to find
counter-examples for some properties, which might be expected if properties
of ONBs are generalized.

It can be shown that the condition
∑
k∈K

|fk|2 < ∞ is equivalent for the

space to be finite dimensional, see 1.2.15.

1.2.1.2 Frames And ONBs

We will revisit Proposition 1.1.26, where it was stated that frames are exactly
the images of ONBs in infinite dimensional space. Can something similar be
done to finite dimensions?

A well-known result regarding this question is

Theorem 1.2.3 ([23] Theorem 1.3.2) Let (fk)
M
k=1 be a frame for CN . Then

the vectors fk can be considered as the first coordinates of some vectors
(gk)

M
k=1 in CM constituting a basis for CM . If (fk)

M
k=1 is tight, then these

(gk) form an orthonormal basis.

A consequence of this result is

Proposition 1.2.4 ([23] Theorem 1.3.2)Let M be a m×n matrix with m ≥
n. Then the columns of this matrix constitute a basis for CM if and only if
the rows constitute a frame for CN .

Or stated in the words of [99]: ”Every matrix with full rank represents a
frame.”

Therefore we now arrive at a direct analog to Proposition 1.1.26
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Proposition 1.2.5 Let {ek}∞k=0 be an arbitrary ONB for l2. The frames for
CN ⊆ l2 are precisely the families {Uek}, where U : l2 → CN is a surjective
operator.

Proof: Let (fk)
M
k=1 be a frame. Define U : l2 → V with

U(ek) =

{
fk k ≤M
0 otherwise

As (ek) is an ONB this operator is well-defined and because (fk) is a frame it
is surjective. It is clearly bounded as it can be seen as a projection l2 → Cm

compsed with U |CM .
On the other hand as an operator into a finite dimensional space, U is

bounded, so Proposition 1.1.26 tells us that fk = U(ek) constitute a frame
for Cn. 2

Corollary 1.2.6 The frames with M elements in Cn are exactly the images
of an ONB in CM by a surjective operator.

Proof: This is just a rephrasing of Theorem 1.2.3. 2

As in Proposition 1.1.30 we can extend that result to

Corollary 1.2.7 Let {ek}nk=0 be an arbitrary ONB for Cn. The Riesz bases
for CN are precisely the families {Uek}, where U : l2 → CN is an invertible
operator.

An extension of this result to frame sequences (respectively Bessel) sequences
is still possible, as every sequence is an image of an ONB with U(ek) = fk,
but the result does not contain new information, as every arbitrary sequence
fulfills is already a frame and Bessel sequence.

1.2.1.3 The Matrices Connected To Frames

Lemma 1.2.8 Let (gk)
M
k=1 be a frame in CN . The N ×M matrix D

D =


 g1 g2 . . . gM




describes the synthesis operator D : l2 → V such that Dgk
c = D · p1..M(c),

where p1..M is the projection l2 → CM .
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Proof:

(D · p1..M(c))i =
M∑

k=1

Di,kck =
M∑

k=1

ck (gk)i

2

We know C = D∗. In the finite dimensional case we just have to use
transposition and complex conjugation and so:

Corollary 1.2.9 Let (gk)k=1M be a frame in CN . The M ×N matrix C

C =




— g1 —
— g2 —
...

...
— gM —




describes the analysis operator C : V → CM ⊆ l2 such that Cgk
f = C · f .

The frame operator is defined as S = D ◦ D∗. S is a n × n matrix
S = D ·D∗. This matrix can be represented very easily by

Proposition 1.2.10 Let {gk |k ∈ K } and {γk |k ∈ K } be families of ele-
ments in H and let Sgk,γk

be the associated frame matrix, then

(Sgk,γk
)m,n =

(
∑

k∈K
γk ⊗ gk

)

m,n

=
∑

k∈K
(γk)m

˙(gk)n

Proof:

Si,j = (Dγk
· Cgk

)i,j =
∑

k

(Dγk
)i,k(Cgk

)k,j =
∑

k

(γk)i(gk)j

2

This result was motivated by the results for Gabor frames, see Section 3.1.2.
We can also express this term as product of an N×1 and a 1×N matrix:

Sgk,γk
=
∑

k∈K
g∗k · γk.

For the pseudoinverse Lemma 1.1.47 can be interpreted very easily in Cn

as
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Corollary 1.2.11 Let {fk} be a frame in Cn, let D be its synthesis operator,
then

D† =




− f̃1 −
− f̃2 −
...

...

− f̃k −




1.2.1.4 Frame Transformation

In linear algebra we learn that unitary operators are exactly the transfor-
mation from one orthonormal basis to the other and invertible matrices are
exactly describing the change between arbitrary bases. So ”switching” from
one ONB to another is rather straight forward. But what about frames?
How can a representation be changed from one frame to another in the finite
dimensional case?

Let (gk)
M
k=1 and (fi)

N
i=1 be two frames. We want to find a way to switch

between these frames. The naive way to do frame transformation would be
just to combine the analysis and synthesis operator of the two frames. So we
could use

g =
∑

k

〈f, gk〉 fk

But if M 6= N we get a problem with this definition, with the different size
of the index sets. Either the vector of coefficients is too long or too short.
In the first case we could set all fk = 0 for k > N and in the second case
gk = 0 for k > M , we could call that ’zero-padding’ in parallel to the concept
in discrete signal processing, see e.g. [97]. But this certainly cannot be an
injective or surjective operator, but the ultimate goal would be to get identity,
perfect reconstruction. Instead trying to overcome this short-coming by some
’periodization’ or ’aliasing’ like in discrete signal processing we can just use
Lemma 1.1.42 to get

Proposition 1.2.12 Let (gk)
M
k=1 and (fi)

N
i=1 be two frames. The M × N

matrix G = Gfj ,g̃k
maps ran(Cgk

) onto ran(Cfk
) such that

f =
M∑

i=1

〈f, gi〉 g̃i =
N∑

i=1

(
G · {〈f, gk〉}Mk=1

)
i
f̃i

The M ×N matrix G = Gf̃j ,gk
maps ran(Cg̃k

) onto ran(Cf̃k
) such that

f =
M∑

i=1

〈f, g̃i〉 gi =
N∑

i=1

(
G · {〈f, g̃k〉}Mk=1

)
i
fi
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Proof: This is just Lemma 1.1.42 rephrased. 2

So analogue to the basis transformation matrix defined in linear algebra,
we can define:

Definition 1.2.1 We call G = Gfj ,g̃k
from Proposition 1.2.12 the frame

transformation matrix.

As Lemma 1.1.42 is valid also for infinite-dimensional spaces, the statements
in this section are not restricted to finite-dimensional spaces.

1.2.1.5 Inverting The Frame Operator

In Section 3.4 we will present a new algorithm for inverting the frame algo-
rithm in the case of Gabor frames. For the calculation of the canonical dual
it is necessary to invert the frame operator. There are several known algo-
rithms, but we will close this section on frames in finite dimensional spaces
with a compilation of two of them, the frame algorithm and the conjugate
gradient method.

We start with the frame algorithm:

Proposition 1.2.13 ([36] Theorem III) Let (fk)
M
k= be a frame for CN with

frame bounds A,B. Given f ∈ CN , define the sequence (gk)
∞
k=1 of vectors in

Cn by

g0 = 0, gk = gk−1 +
2

A+B
S (f − gk−1) for k ≥ 1.

Then

‖f − gk‖ ≤
(
B − A

B + A

)k
‖f‖

Cn .

This is the Neumann algorithm, see A.4.9, with the relaxation parameter
2

A+B
.

The conjugate gradient algorithm has the big advantage that the calcu-
lation of the frame bounds is not necessary:

Proposition 1.2.14 ([23] Lemma 1.2.5) Let (fk)
M
k= be a frame for CN with

frame bounds A,B. Given f ∈ CN , f 6= 0, define the sequences (gk)
∞
k=1,

(rk)
∞
k=1 and (pk)

∞
k=1 of vectors in CN and (λk)

∞
k=1 a sequence of numbers such

that
g0 = 0, r0 = p0 = Sf, p−1 = 0

and for k ≥ 1

λk =
〈rk, pk〉
〈pk, Spk〉

,
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gk+1 = gk + λkpk,

rk+1 = rk − λkSpk,

pk+1 = Spk −
〈Spk, Spk〉
〈pk, Spk〉

pk −
〈Spk, Spk−1〉
〈pk−1, Spk−1〉

pk−1

Then gk → f for k → ∞. Let A and B be the smallest and the largest eigen-

values of S, let σ =
√
B−

√
A√

B+
√
A
, then the speed of convergence can be estimated

by

‖f − gk‖ ≤ 2σk

1 + σ2k
‖f‖

1.2.2 Classification Of Finite Dimensional Spaces With
Frames

For an ONB (ei) if the sum of the elements
∑
i

‖ei‖H is finite, the dimension

of the space is finite and vice versa. The Example 1.2.1 shows that that is
not true anymore with frames, as in this case

∑

l,k

∥∥∥e(l)k
∥∥∥ =

∞∑

l=1

N∑

k=1

∥∥∥∥
1

l
ek

∥∥∥∥ =
∞∑

l=1

N

|l| = ∞

But taking the square sum of the norms of the elements of a frame for H
is an equivalent condition for H being finite dimensional:

Proposition 1.2.15 Let (gk) be a frame for the Hilbert space H. Let (el) be
an ONB for H. Then the following statements are equivalent

• ∑k ‖gk‖
2 <∞

• ∑l ‖el‖
2 <∞

• the space is finite dimensional.

Proof: The equivalence of the second and third statements is clear.
∑

k

‖fk‖2 =
∑

k

∑

l

|〈fk, el〉|2 =
∑

l

∑

k

|〈fk, el〉|2 = (∗)

On the one hand, as the first sum is finite, Fubini applies and this means
∑

k

‖fk‖2 = (∗) ≥
∑

l

A · ‖el‖2

and so the sum
∑

k ‖ek‖
2 must be finite.
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On the other hand if
∑

l ‖el‖
2 <∞ (and so again Fubini applies) then

∑

k

‖fk‖2 = (∗) ≤
∑

l

B · ‖el‖

2

Corollary 1.2.16 Let (fk) be a frame and (ek) an ONB for H then

A ·
∑

l

‖el‖2 ≤
∑

k

‖fk‖2 ≤ B ·
∑

l

‖el‖2

or equivalently (for finite dimensional spaces)

A · dim (H) ≤
∑

k

‖fk‖2 ≤ B · dim (H)

Proof: In the last proof we have shown that this is true for finite dimen-
sional cases, and also that for infinite dimensional spaces all the sums are
infinite. 2

And as an evident corollary we find:

Corollary 1.2.17 Let (fk)
m
k=1 be a tight frame in the finite dimensional H

with dimH = n, then

∑

k

‖fk‖2 = A · n resp.

∑
k ‖fk‖

2

n
= A

If all frame elements have equal length, i.e. ‖fk‖H = d for all k, then

m · d = A · n resp.
m · d
n

= A

If this frame is normalized, then

A =
m

n

Compare to [108], where a possibility to construct such a frame is given.
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1.2.3 Frames And Hilbert-Schmidt Operators

With a very similar proof to the one of Proposition 1.2.15 it can be shown
that

Proposition 1.2.18 Let (fk) be a frame and (ei) an ONB in H. Let H be
an operator H → H. Then

A ·
∑

i

‖H∗ei‖2
H ≤

∑

k

‖Hfk‖2
H ≤ B

∑

i

‖H∗ei‖2
H

Proof:
∑

k

‖Hfk‖2 =
∑

k

∑

l

|〈Hfk, el〉|2 =
∑

l

∑

k

|〈fk, H∗el〉|2 = (∗)

(∗) ≥ A
∑

l

‖H∗el‖2

and
(∗) ≤ B

∑

l

‖H∗el‖2

2

From the proof it is clear that the right inequality is true for Bessel
sequences, so

Lemma 1.2.19 Let (fk) be a Bessel sequence and (ei) an ONB in H. Let
H be an operator H → H. Then

∑

k

‖Hfk‖2
H ≤ B

∑

i

‖H∗ei‖2
H

As we know that an operator is Hilbert Schmidt if and only if it’s adjoint
operator is as well, we get:

Corollary 1.2.20 An operator H : H → H is Hilbert Schmidt if and only if
∑

k

‖Hfk‖2
H <∞

for one (and therefore for all) frame(s).

√
A ‖H‖HS ≤

√∑

k

‖Hfk‖2
H ≤

√
B ‖H‖HS

49



The idea for this was found in [24].

Of course like the frame operator of an ONB (which is the identity) every
frame operator has a connection to the dimension of the space. It is very
easy to prove

Lemma 1.2.21 S is compact if and only if H is finite dimensional.

Proof: If the space in finite dimensional every operator is compact.
If S is compact, then S ◦S−1 = Id is compact (A.4.26) and therefore the

space is finite dimensional. 2

1.2.3.1 Matrix Representation Of HS Operators With Frames

We can now come back to the relationship of matrices and operators from H
to H, possibly infinite dimensional, stated in Section 1.1.7.3. We will look at
Hilbert-Schmidt operators, see appendix A.4.5.4.

We now have the adequate tools to state that HS operators correspond
exactly to the matrices having a bounded Frobenius norm, see Definition
A.3.12:

Proposition 1.2.22 Let (gk) be a frame in H1 with bounds A,B, (fk) in H2

with A′, B′. Let M be a matrix in l(2,2) with ‖M‖2,2 =
√∑

i

∑
j

|Mi,j|2. Then

O(M) ∈ HS(H1,H2), the Hilbert Schmidt class of operators from H1 to H2,
with ‖O(M)‖HS ≤

√
BB′ ‖M‖2,2.

Let O ∈ HS, then M(O) ∈ l(2,2) with ‖M(O)‖2,2 ≤
√
BB′ ‖O‖HS.

Proof: 1.) Naturally the matrices in l(2,2) correspond to Hilbert-Schmidt
operators on l2 as

‖M‖l2→l2

HS =

√∑

i

‖Mei‖2
H1

(Mei)p =
∑

q

Mp,qδi,q = Mp,i

=⇒
∑

i

‖Mei‖2
H1

=
∑

i

∑

p

|Mp,i|2

As the Hilbert-Schmidt class of operators is an ideal, see A.4.38, we know
that

‖O(M)‖HS = ‖Dfk
◦M ◦ Cgk

‖HS ≤ ‖Dfk
‖Op·‖M‖HS·‖Cgk

‖Op =
√
BB′ ‖M‖2,2
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2.)

‖M(O)‖2
2,2 =

∑

k

|〈Ogl, fk〉|2 ≤ B′ · ‖Ogl‖2
H1

=⇒
∑

l

∑

k

|〈Ogl, fk〉|2 ≤
∑

l

B′ · ‖Ogl‖2
H1

Cor.1.2.20

≤ BB′ ‖O‖2
HS

2

The norm for matrices in l2,2 is also called Frobenius or Hilbert Schmidt
matrix norm, see Definition A.3.12 and also Section 3.1.2.

1.2.3.2 Frames In The Hilbert-Schmidt Class Of Operators

Section 1.1.7.3 tells us that an operator can be described by the matrix
M(fk,g̃j) (O)k,j = 〈Og̃j, fk〉. This is the matrix that maps Cfk

(f) 7→ Cgk
(Tf).

It is identical to the HS inner product of O and fk ⊗ g̃j.

Theorem 1.2.23 Let (gk)k∈K be a sequence in H1 , (fi)i∈I in H2. Then

1. Let (gk) and (fi) be Bessel sequences with bounds B,B′, then (fi ⊗
gk)(i,k)∈I×K is a Bessel sequence for HS(H1,H2) with bound

√
B ·B′.

2. Let (gk) and (fi) be frames with bounds A,B and A,B′. Then (fi ⊗
gk)(i,k)∈I×K is a frame for HS(H1,H2) with bounds

√
A · A′ and

√
B ·B.

A dual frame is (f̃i ⊗ g̃k).

3. Let (gk) and (fi) be Riesz bases. Then (fi⊗gk)(i,k)∈I×K is a Riesz basis

for HS(H1,H2). The biorthogonal sequence is (f̃i ⊗ g̃k).

Proof: Suppose the operator O ∈ HS, then

M(fk,gj) (O)k,j = 〈Ogj, fk〉H1

Cor.A.4.40
=

〈
O, fk ⊗ gj

〉
HS

With Proposition 1.2.22 we know that the system (g̃k⊗gj|k, j) forms a Bessel
sequence for HS with bounds BB′. Following Theorem 1.1.12 and the fact
that M is injective, we know that this system is a frame. Directly we can
again use Proposition 1.2.22 with the dual frame. We know from Proposition
1.1.23 that

‖O‖HS =
∥∥∥O(f̃k,g̃j)M(fk,gj)(O)

∥∥∥
HS

=
∥∥∥O(f̃k,g̃j)

(
M(fk,gj) (O)

)∥∥∥
HS

≤

Th.1.1.7

≤ 1√
AA′

∥∥M (fk,gj)(O)
∥∥
HS
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Therefore
AA′ ‖O‖2

HS ≤
∥∥M (fk,gj)(O)

∥∥2

HS ≤ BB′ ‖O‖2
HS

This is equal to

AA′ ‖O‖2
HS ≤

∑

k,j

∣∣〈O, fk ⊗ gj
〉
HS

∣∣2 ≤ BB′ ‖O‖2
HS

If both sequences are Riesz bases Theorem 1.1.35 tells us that Cgk⊗fj
=

M (fk,gj) is bijective and therefore (fk ⊗ gj) is a Riesz Basis.

〈
fk1 ⊗ gj1 , f̃k2 ⊗ g̃j2

〉
HS

Lem.A.4.39
=

〈
fk1 , f̃k2

〉
H
· 〈gj2 , gj1〉H =

= δk1,k2 · δj1,j2
2

In section 1.3 we will look at operators which can be described in this
sense by diagonal matrices. In the Hilbert-Schmidt class we will look at
operators spanned by γk ⊗ gk. We now already know

1. that this will be a Bessel sequence for Bessel sequences (gk) and (fk)

2. and because every sub-family of a Riesz basis is a Riesz sequence, that
for Riesz bases, (γk ⊗ gk) is a Riesz sequence.

1.2.3.3 Matrices And The Kernel Theorems

For L2(Rd) the HS operators are exactly those integral operators with kernels
in R2d, see [110] [43]. This means that such an operator can be described as

(Of) (x) =

∫
κO(x, y)f(y)dy

Or in weak formulation

〈Of, g〉 =

∫ ∫
κO(x, y)f(y)g(x)dydx = 〈κO, f ⊗ g〉 (1.2)

which can be used for other kernel theorem for Banach spaces and distribu-
tions, see below.

From 1.1.22 we know that

O =
∑

k,i

〈
Og̃j, f̃k

〉
fk ⊗ gj

and so
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Corollary 1.2.24 Let O ∈ HS
(
L2
(
Rd
))

. Let (gj) and (fk) be frames for
L2
(
Rd
)
. Then the kernel of O is

κO =
∑

j,k

〈
Og̃j, f̃k

〉
· fk ⊗ gj

Proof:

κ(O) = κ

(
∑

k,i

〈
Og̃j, f̃k

〉
fk ⊗ gj

)
=

=
∑

k,i

〈
Og̃j, f̃k

〉
κ
(
fk ⊗ gj

) LemmaA.4.42
=

∑

k,i

〈
Og̃j, f̃k

〉
fk ⊗ gj

2

There is a large variety of function spaces, where operators are exactly in-
tegral operator using equation 1.2, for example for bounded operators L2(Rd)
and HS operators, for the Schwartz space O : S → S ′ , the modulation spaces
O : M1

v (R
d) →M∞

1/v, Feichtinger’s algebra O : S ′
0 → S0 and O : S0 → S ′

0. See

[110] [63] [43]. In order to derive similar results for the case of Banach spaces
of functions or distirbutions Section 1.1.7.3 would have to be generalized to
these spaces.

1.2.3.4 The HS Inner Product Algorithm

Let us return to the finite dimensional space Cn. As seen in the section
about matrix representation in HS, the inner product 〈T, gk ⊗ fl〉HS becomes
important. The diagonal version 〈T, gk ⊗ fk〉HS will play an essential role in
the next section about frame multipliers. There are several ways to calculate
this HS inner product, which we will list in Theorem 1.2.28. We will first
collect the following properties for the proof of this theorem.

Note that with ⌊x⌋ we describe the biggest integer smaller than x.

Lemma 1.2.25 Let Mm,n be the vector space of m × n-matrices with the
inner product, cf. Section A.3.5.1,

〈A,B〉fro =
m−1∑

i=0

n−1∑

j=0

Ai,jBi,j.

For M ∈ Mm,n let

vec(n) (M)k = Mk mod n,⌊ k
n ⌋ for k = 0, . . . ,m · n− 1
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With this function this space is isomorphic to Cm×n with the standard inner
product. The inverse of this function is

Matn(x)i,j = xi+j·n

Proof: The function vec(n) is clearly linear and inverse to Matn. 2

The function vec(n) joins the columns together to a vector. The function
x 7→ Matn(x) separates this vector again. Matn(x) is well known in signal
processing, it is called Polyphase representation there.

We will denote the complexity of a formula by ∼, so by f ∼ n, we
mean that the complexity of the calculation of f needs (approximately) n
operations.

Lemma 1.2.26 The complexity of the calculation of the following terms is

1. inner product: Let x, y ∈ Cp, then

〈x, y〉 ∼ 2p− 1

2. matrix-vector multiplication: Let A ∈ Mp,q, x ∈ Cq, then

A · x ∼ p · (2q − 1)

3. matrix-matrix multiplication: Let A ∈ Mp,q, B ∈ Mq,r, then

A ·B ∼ p · r · (2q − 1)

4. Kronecker product of matrices: Let A ∈ Mp,q, B ∈ Mr,s, then

A⊗B ∼ p · q · r · s

Proof: Use the definitions:

〈x, y〉 =

p−1∑

k=0

xiyi

(A · x)i =

q−1∑

j=0

Ai,jxj for i = 0, . . . , p
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(A ·B)i,k =

q−1∑

j=0

Ai,jBj,k for i = 0, . . . , p and k = 0, . . . , r

(A⊗B)i,k = A⌊ i
r⌋,⌊ i

s⌋ ·Bi mod r ,k mod s

for i = 0, . . . , rp− 1 and k = 0, . . . , qs− 1

2

Lemma 1.2.27 Let A ∈ Mr,s, B ∈ Mp,q and C ∈ Mq,r. Then

(
AT ⊗B

)
·
(
vec(q)C

)
= vec(p)

(
A · C · ~B

)

Proof:

((
AT ⊗B

) (
vec(q)C

))
i
=

q·s−1∑

j=0

(
AT ⊗B

)
i,j

(
vec(q)C

)
j
=

q·s−1∑

j=0

AT⌊ i
p⌋,⌊ j

q⌋ ·Bi mod p,j mod qCj mod q,⌊ j

q ⌋ = (∗)

Let j1 = j mod q and j2 =
⌊
j
q

⌋
, so

(∗) =

q−1∑

j1=0

s−1∑

j2=0

AT⌊ i
p⌋,j2 ·Bi mod p,j1Cj1,j2 =

=
s−1∑

j2=0

Aj2,⌊ i
p⌋ · (B · C)i mod p,j2

=

= (B · C · A)i mod p,⌊ i
p⌋

2

Theorem 1.2.28 Let (hl)
L
l=0 be a frame in Cn, (gk)

K
l=0 in Cm. Let T be a

linear operator T : Cn → Cm. Then

1.
〈
T, gk ⊗ hl

〉
HS =

〈
vec(n) (T ) , vec(n)

(
gk ⊗ f l

)〉
Cm·n ∼ (3mn+m−1) for

each single pair (l, k).

2. 〈T, gk ⊗ hl〉HS = 〈Thl, gk〉Cm ∼ (2mn+m−1) for each single pair (l, k).
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3.
〈
T, gk ⊗ hl

〉
HS = (Cgk

· T ·Dhl
)l,k ∼ (L (2mn−m+ 2mK −K)) for

all values (l, k).

4. 〈T, gk ⊗ hl〉HS =
(
DT
gk
⊗ Cfl

)
~T ∼ (KL · (3mn− 1))) for all values

(l, k).

Proof: We will use Lemma 1.2.26 extensively:
1.) Calculation of gk⊗hl ∼ m·n. vec(n) is only a reordering. The complex

conjugation ∼ m. Calculation of inner product ∼ 2 · (mn) − 1. So the sum
is 3mn+m− 1.

2.) Calculation of Thl ∼ m (2n− 1). Calculation of the inner product
∼ 2m− 1. The sum is 2mn+m− 1.

3.) That 〈T, gk ⊗ hl〉HS = (Cgl
· T ·Dhl

)l,k can be seen using Lemma
A.3.7. T ·D ∼ mL(2n − 1), C · (TD) ∼ KL(2m − 1), so altogether we get
mL2n−mL+KL2m−KL = L (2mn−m+ 2mK −K) .

4.) Using Lemma 1.2.27 we know that this equality is true. For the
calculation of DT

gk
⊗ Cfl

we need ∼ KmLn. And for the matrix vector
multiplication in Cmn ∼ KL(2mn− 1). So overall KL(2mn− 1)+KmLn =
KL · (3mn− 1). 2

So overall if we have to calculate the inner products for all pairs (k, l) the
third method is the fastest (except when n is very big and m and K very
small). If we need only the diagonal part k = l, the second one is the most
efficient as for using the third method we would still have to calculate the
whole matrix and then use its trace.

1.3 Frame Multiplier

1.3.1 Basic Definition

R. Schatten provides a detailed study of ideals of compact operators in [110]
using their singular value decomposition. He investigates the operators of
the form

∑
λiϕi ⊗ ψi where (ϕi) and (ψi) are orthonormal families. We are

interested in similar operators where the only difference is that the families
are frames or Bessel sequences. See Section A.4.4.1 for basic properties of
the rank one operators f ⊗ g.

Analogous to the definition of Gabor multiplier, e.g. found in [47] , we
define:

Definition 1.3.1 Let H1, H2 be Hilbert-spaces, let G = {gk}k∈K be a frame
in H1, F = {fk}k∈K in H2. Define the operator Mm,F ,G : H1 → H2, the
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frame multiplier for the frames {gk} and {fk}, as the operator

Mm,F ,G =
∑

k

mk 〈f, gk〉 fk

where m ∈ l∞(K).

For v ∈ l2 let M = diag(v) be the diagonal matrix, for which Mi,j = δi,jvi.

Using Theorem 1.1.22 we get

Corollary 1.3.1 With the conventions in Definition 1.3.1

Mm,G,G′ = O(fk,gj) (diag(m))

To be able to talk about diagonal matrices we use the condition in Definition
1.3.1 that the two frames must have the same index set.

We will often use the alternate notation Mm,fk,gk
. Let Mm,gk

= Mm,gk,gk
.

We will simplify this notation, if there is no chance of confusion, using Mm

or even M. Also the following notation is obviously equivalent:

Corollary 1.3.2

Mm,fk,gk
= Dfk

(m · Cgk
) =

∑

k

mk · fk ⊗ gk

The frame multiplier is a linear combination of rank one (or zero) opera-
tors. If e.g. mk is non-zero for only finitely many indices, then M has finite
rank. (So it can be shown that the multiplier is compact for m ∈ c0, see
Section 1.3.5 .)

The multiplier is well defined, which will be shown in Section 1.3.5.
The term ”multiplier” was used corresponding to Gabor or STFT multi-

pliers [47]. This is not equivalent to the definition of multipliers e.g. found
in [80]: A is a multiplier if and only if ATt = TtA for the translation operator
Tt and all t. For frame multipliers no connection to the shift operator can be
made.

We will see that the class of frame multipliers is quite ”big”. All compact
operators can be written as frame multipliers. Therefore it is important to
investigate properties of this kind of operators. Especially interesting is the
dependence on the properties of the symbol, see Section 1.3.5.1 or the frame,
see e.g. Section 1.3.7.

More general we can define such an operator for a Bessel sequence:
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Definition 1.3.2 Let H be a Hilbert-space, let (gk) be Bessel sequences in
H1 and and (fk) in H2 , define the operator Mm,fk,gk

: H1 → H2, the Bessel
multiplier for (fk) and (gk), as the operator

Mm,fk,gk
(f) =

∑

k

mk 〈f, gk〉 fk

Clearly every frame multiplier is a Bessel multiplier. Since m ∈ l∞ we
know that for c ∈ l2 also m · c ∈ l2. As we use Bessel sequences we therefore
know that the convergence in Definition 1.3.2 is unconditional.

Definition 1.3.3 Let σU(M) = m in Definition 1.3.1. Then m is called the
(upper) symbol of M.

This relation σU does not have to be a well-defined function. This is only
the case if the operators g′k ⊗ gk have a basis property, cf. 1.3.7.1.

1.3.2 The Multiplier From l2 → l2

On l2 a pointwise multiplication, (a · c)i = ai · ci, can be defined, which is
certainly associative and commutative. As l∞ · l2 ⊆ l2 it is clear that this
multiplication is well defined for a ∈ lp. For a ∈ l2 this multiplication defines
an inner operation. The problem from an group-theoretical point of view is
that the unit element would be the constant sequence 1, which is in l∞ but
not in any lp for 1 ≤ p < ∞. There are certainly no inverse elements in c
for elements in c0, because if the sequence c converges to zero, its inverse
sequence must tend to infinity. The space l2 with this product is a commuta-
tive semi-group. The set of possible multipliers is the set of all polynomials
of order 1, i.e. {ax}, on this commutative semi-group. For more information
about polynomials over groups and semi-groups see [7]. Only if we restrict
this operation to cN = {c ∈ l∞ |ck = 0∀k > N } for a N ∈ N, we will have a
group structure.

We will use the symbol Mm for the mapping Mm : l2 → l2 and m ∈ lp

(for a p > 0) given by the pointwise multiplication Mm({ck}) = {mk · ck}.
So

Mm = D ◦Mm ◦ C
As preparation for Theorem 1.3.13 we can show that the class of operators

depends on the space containing m. Let δi be the standard ONB in l2,
(δi)j = δi,j.
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Lemma 1.3.3 1. Let m ∈ l∞. The operator Mm : l2 → l2 is bounded
with ‖Mm‖Op = ‖m‖∞.

2. M∗
m = Mm

3. Let m ∈ l1. The operator Mm : l2 → l2 is trace class with ‖Mm‖trace =
‖m‖1.

4. Let m ∈ l2. The operator Mm : l2 → l2 is a Hilbert-Schmidt (HS)
operator with ‖Mm‖HS = ‖m‖2.

5. Let m ∈ c0. Then there exist finite sequences mN = (m0, . . . ,mN , 0, . . .)
with MmN

→ Mm for all lp norms. Therefore Mm is compact.

Proof: 1.) We already know that

‖m · c‖2 ≤ ‖m‖∞ ‖c‖2 .

On the other hand Mmδi = mi =⇒ ‖Mm‖Op ≥ ‖m‖∞.
2.)

〈Mmc, d〉l2 =
∑

k

mkck · dk =
∑

k

ck ·mkdk = 〈c,Mmd〉l2

3.) [Mm] =
√
M∗

mMm =
√MmMm = M|m| and so

‖Mm‖trace =
∑

i

〈[Mm] δi, δi〉 = ‖m‖1 .

4.)

‖Mm‖2
HS =

∑

i

‖Mmδi‖2 = ‖m‖2
2 .

5.) Let c ∈ lp, then lim
N→∞

mN ·c = m·c as ‖mN · c−m · c‖p ≤ ‖mN −m‖∞·
‖c‖p.

2

Compare this result also to multipliers for L2
(
Rd
)
, see Section A.4.3.5.

To stress the connection of multipliers to diagonal matrices, we could also
prove the third part of this lemma by using Proposition 1.2.22. The operator
Mm corresponds to the diagonal matrix with diagonal entries mi, so this
proposition gives us the wanted property.
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1.3.2.1 Surjective And Injective Multipliers

Lemma 1.3.4 Let Mm be the multiplier with a fixed element m ∈ lp with
p ≥ 1. Then Mm is not surjective from l2 → l2.

Proof: Suppose Mm : l2 → l2 is surjective. This means that ∀c ∈ l2 ∃b ∈
l2 : a · b = c ⇐⇒ ai · bi = ci.

1.) Suppose there is an index i0 such that ai0 = 0. Let c be such that

ci =

{
1 i = i0
ai otherwise

Then there is no b such that a · b = c. So we have arrived at a contradiction.
2.) Suppose all entries ai 6= 0, then there is no b such that a · b = a. If

this were the case then ai · bi = ai and so bi = 1. But then ‖b‖pp =
∑
i

1p 6<∞.

2

For injectivity we can even give an equivalence property

Lemma 1.3.5 Let (ai) ∈ l∞. If and only if ai 6= 0 then ma : l2 → l2 is
injective.

Proof: Let ma(b) = ma(c) so a · b = a · c. This means that ai · bi = ai · ci
for all i.

If ai 6= 0 =⇒ bi = ci and so if for all i ai 6= 0 c = d.

On the other hand if there is an i0 where ai0 = 0 then for any c and
c′ = c+ δi0 we have that ma(c) = ma(c

′) and c 6= c′. 2

1.3.3 The Multiplier For An ONB

To be able to compare multipliers for ONBs to the results in this work, we will
repeat the findings of [110]. Let in this sector (ϕj) and (ψj) be orthonormal

sequences for the Hilbert space H. Remember that [T ] = (TT ∗)
1
2 as in

Definition A.4.22.

Theorem 1.3.6 ([110] I.1 Theorem 1) Let (λi) be a sequence. Let Mλ =∑
j

λjϕj ⊗ ψj. Then this is well-defined and bounded if and only if λ ∈ l∞.

And ‖Mλ‖Op = ‖λ‖∞,
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We will show one direction for all Bessel sequences in Section 1.3.5. We can
not show an equality for the norm, but an inequality using the Riesz bounds
for Riesz bases, see Proposition 1.3.20.

Corollary 1.3.7 ([110] I.1 Corollary) Let λ ∈ l∞. Mλ =
∑
j

λjϕj ⊗ ψj = 0

if and only if λi = 0 for all i.

We will look into the question, whether the connection symbol to operator,
m 7→ Mm, is injective, in the following Section 1.3.7.1.

Theorem 1.3.8 ([110] I.1 Theorem 2) Let λ ∈ l∞. Let Mλ =
∑
j

λjϕj ⊗ ψj.

1. M∗
λ =

∑
j

λjψj ⊗ ϕj

2. M∗
λMλ =

∑
j

|λj|2 ψj ⊗ ψj

3. [Mλ] =
∑
j

|λj|ϕj ⊗ ψj

4. The operator
∑
j

λj ϕj ⊗ ϕj is normal.

5. It is self-adjoint if and only if the λi are real.

The first and fifth statements are true for all Bessel sequences, see Section
1.3.5. For the rest the orthonormality of the sequences is important.

Theorem 1.3.9 ([110] I.1 Theorem 2) An operator O : H → H is

1. a projection if and only if O = Mλ =
∑
j

ϕj ⊗ ϕj

2. isometric if and only if O = Mλ =
∑
j

ϕj ⊗ ψj and (ψj) are complete.

3. unitary if and only if O = Mλ =
∑
j

ϕj⊗ψj and (ϕj), (ψj) are complete.

All these properties need the orthonormality condition.

Theorem 1.3.10 ([110] I.2 Theorem 4) Let λ ∈ l∞. The operator Mλ =∑
j

λjϕj ⊗ ψj has an inverse if and only if (ϕj) and (ψj) are complete and λ

is semi-normalized. Then

Mλj ,ϕj ,ψj
= M 1

λi
,ψi,ϕi
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Something similar can be shown for Riesz bases using the dual bases, see
Proposition 1.3.28.

Corollary 1.3.11 ([110] I.2 Corollary) Let λ ∈ l∞. Let Mλ =
∑
j

λjϕj ⊗ψj.

If and only if λ ∈ c0 and λ is real then Mλ is compact and self-adjoint. In
this case the spectrum of Mλ is λ and possibly 0.

We will show the first part of the corollary for Bessel sequences in Theorem
1.3.13.

Overall it is clear from the remarks we made, that the handling of the
frame multipliers becomes more difficult than in the case of orthonormal
sequences. But we have also seen, that in the case of Riesz bases a lot of these
properties stay true. We will devote the whole Section 1.3.7 to multipliers
with Riesz bases.

1.3.4 Combination Of Multipliers

How do two multipliers combine? We have chosen that as one of the first
questions to answer, because we will need this formula very often and it
becomes evident that the situation with frames or Bessel sequences is not
nearly as ”smooth” as with orthonormal sequences.

Lemma 1.3.12 For two multipliers for the sequences (gk),(fk),(g
′
k) and (f ′

k)

Mm(1),fk,gk
=
∑

k

m
(1)
k 〈f, gk〉 fk

and
Mm(2),fk,gk

=
∑

l

m
(2)
l 〈f, g′l〉 f ′

l

the combination is
(
Mm(1),fk,gk

◦ Mm(2),f ′
k
,g′

k

)
(f) =

∑

k

∑

l

m
(1)
k m

(2)
l 〈f, g′l〉 〈f ′

l , gk〉 fk =

= Dfk
Mm(1)Ggk,f

′

k
Mm(2)Cg′

k

Proof:

(
Mm(1),fk,gk

◦ Mm(1),f ′
k
,g′

k

)
(f) = Mm(1),fk,gk

(
∑

l

m
(2)
l 〈f, g′l〉 f ′

l

)
=
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=
∑

k

m
(1)
k

〈
∑

l

m
(2)
l 〈f, g′l〉 f ′

l , gk

〉
fk =

∑

k

∑

l

m
(1)
k m

(2)
l 〈f, gl〉 〈fl, gk〉 fk

Using the Gram matrix this can be written as

Mm(1),fk,gk
◦ Mm(2),f ′

k
,g′

k
= Dfk

Mm(1)Cgk
Df ′

k
Mm(2)Cg′

k
=

= Dfk
Mm(1)Ggk,f

′

k
Mm(2)Cg′

k

2

Thus in the general frame case no exact symbolic calculus can be assumed,
i.e. the combination of symbols does not correspond to the combination of
the operators. Even in the case of using only one Bessel sequence we get

Mm(1),gk
◦ Mm(2),gk

6= Mm(1)·m(2),gk
.

In general the product of two frame multipliers is not a frame multiplier
any more. It is not induced by a diagonal matrix anymore, following Section
1.1.7.3, but rather

(
Mm(1),fk,gk

◦ Mm(2),fk,gk

)
= O(fi,gj)

((
m

(1)
i ·

(
Ggi,fj

)
i,j
m

(2)
j

)
i,j

)

1.3.5 Properties Of Multipliers

1.3.5.1 The Connection Of Properties Of Symbol And Multiplier

Now equivalent results proved in [47] for Gabor multiplier can be shown for
Bessel multipliers.

Theorem 1.3.13 Let M = Mm,fk,gk
be a Bessel multiplier for the Bessel

sequences {gk} and {fk} with the Bessel bounds B and B′. Then

1. If m ∈ l∞, i.e. m is bounded, M is a well defined bounded operator.
‖M‖Op ≤

√
B′

√
B · ‖m‖∞.

2. M∗
m,fk,gk

= Mm,gk,fk
. Therefore if m is real-valued and fk = gk, M is

self-adjoint.

3. If m ∈ c0, M is compact.

4. If m ∈ l1, M is a trace class operator with ‖M‖trace ≤
√
B′

√
B ‖m‖1.

And tr(M) =
∑
k

mk 〈fk, gk〉.
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5. If m ∈ l2, M is a Hilbert Schmidt operator with ‖M‖HS ≤
√
B′

√
B ‖m‖2.

Proof: We will use the notation D = Dfk
, C = Cgk

with ‖D‖Op ≤
√
B′

and ‖C‖Op ≤
√
B. From 1.1.1 we know that the members of a frame are

norm bounded, so ‖gk‖H ≤
√
B and ‖g′k‖H ≤

√
B′.

1.) This follows directly from the definition of the multiplier as C◦Mm◦D
and Lemma 1.3.3.

‖M‖ = ‖C ◦Mm ◦D‖ ≤ ‖C‖ · ‖m‖∞ · ‖D‖ ≤
√
B ‖m‖∞

√
B′

2.) M = Cgk
◦Mm ◦Dfk

= Cgk
◦Mm ◦C∗

fk
, so M∗

m = Cfk
◦M∗

m ◦C∗
gk

. From
Lemma 1.3.3 we know M∗

m = Mm. If mk ∈ R M∗
m = Mm, so M∗ = M.

3.) Let mN be the finite sequences from Lemma 1.3.3, then for every
ǫ > 0 there is an N such that

‖MmN
− Mm‖Op = ‖DMmN

C −DMmC‖Op = ‖D (MmN
−Mm)C‖Op ≤

≤ ‖D‖Op ‖MmN
−Mm‖Op ‖C‖Op ≤

√
B′ · ǫ

√
B

MmN
is a finite sum of rank one operators and so has finite rank. This

means that Mm is a limit of finite-rank operators and with Corollary A.4.27
therefore compact.

4.)

M(f) =
∑

k

〈f, gk〉 (mk · g′k)

so according to the definition of trace class operators A.4.23 we just have to
show that ∑

k

‖gk‖H · ‖mkg
′
k‖H <∞

∑

k

‖gk‖H · ‖mkg
′
k‖H =

∑

k

‖gk‖H |mk| ‖g′k‖H ≤
√
B ·

√
B′ · ‖m‖1

Due to A.4.36

tr(M) =
∑

k

〈mk · g′k, gk〉 =
∑

k

mk 〈g′k, gk〉

5.) The operator Mm : l2 → l2 is in HS due to Lemma 1.3.3 with bound
≤ ‖m‖2. The HS operators combined with other linear operators stay in
HS, refer to Lemma A.4.38. Therefore

‖Dfk
MmCgk

‖HS ≤ ‖Dfk
‖Op ‖m‖2 ‖Cgk

‖Op ≤
√
B
√
B′ ‖m‖2

2

Remark:
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1. Property (3) could be shown by using (1), as we know that

‖m−mN‖∞ → 0 for N → ∞.

2. Property (4) could be very easily shown using the property for the mul-
tipliers on l2, see Lemma 1.3.3, and the fact, that trace class operators
act as ideal. But this proof uses the special form of the operators and
the basic definition for trace class operators. For this proof the Bessel
bounds are only needed as upper bound for the norms of the frame
elements. So instead of the Bessel bound any such upper bound can
be used.

3. To reach an equality for the norm inequalities above is in general not
possible. In this case the map from the symbol to the multiplier is
injective. We will investigate this question in Section 1.3.7.1.

4. Due to this results it is also clear that the sum
∑
mkfk ⊗ gk converges

in the respective norm ‖.‖Op, ‖.‖HS or ‖.‖trace.

5. It should be possible to use analogue proofs for continuous frames and
some properties. Some thought have to be given to which function
spaces are used for the symbol. A natural choice in the case of Gabor
frames would be the Modulation spaces, cf. Section 2.1.3. An ana-
logue property does not hold for all such spaces, because in [65] it is
shown that the pseudo differential operator is only bounded for sym-
bols in M r,1 for 1 ≤ r ≤ ∞ and M2,1 and M2,2. For all other spaces
counterexamples could be constructed there.

For Riesz and orthonormal base we can show, see Proposition 1.3.20 and
Theorem 1.3.6, that if the multiplier is well-defined, then the symbol must
be in l∞. This is not true for general frames, as can be seen, when using the
frame in Example 1.2.1 (2), gk,l = 1

l2
ek and using the symbol mk,l = l2. Then

Mmk,l,gk,l
=
∑

k,l

l2
〈
f,

1

l2
· ek
〉

1

l2
· ek =

∑

k,l

〈
f,

1

l
· ek
〉

1

l
· ek = Shkl

where hkl = 1
l
ek from Example 1.2.1 (1).

1.3.5.2 Frame Multiplier And Compact Operators

The above mentioned operator classes can be described with Bessel sequences
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Lemma 1.3.14 An operator T is compact (nuclear respectively Hilbert Schmidt)
if and only if there exist two frames (gk) (g′k) such that T =

∑
k

mkgk ⊗ g′k

with (mk) ∈ co (l1 resp. l2).

Proof: See [110] I.4 Theorem 7, II.1 Theorem 3 and III.1 Theorem 5,
where it is proved that every such operator can be written in this way for
two ONBs, the converse follows from Theorem 1.3.13. 2

For a classification it is better to use ONBs as they form the smaller class of
operators.

That does not work for a fixed pair of frames, as a multiplier for one
ONB does not have to be one for another one. For examples look at diagonal
matrices and different ONBs in R2.

1.3.5.3 Frame Multipliers In L2
(
Rd
)

Lemma 1.3.15 Let (gk) and (γk) be frames in L2
(
Rd
)
. Let m ∈ l2, then

the kernel of Mm,gk,γk
is

κ (Mm,gk,γk
) =

∑
mkgk ⊗ γk

Proof: If m ∈ l2, we know that M is in HS and following Theorem A.4.41
we know that this operator is an integral operator.

M(f)(x) =
∑

k

mk 〈f, γk〉 gk(x) =
∑

k

mk

∫

Rd

f(y)γk(y)dygk(x) =

=

∫

Rd

(
∑

k

mkγk(y)gk(x)

)
f(y)dy

2

This result can of course be extended to other spaces, where such a kernel
representation is possible, e.g. modulation spaces [63].

1.3.5.4 Positive Multipliers

An easily proved statement is

Proposition 1.3.16 Let m ∈ l∞ with mk > 0. Then Mm,gk
is positive.
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Proof:

〈Mf, f〉 =
∑

k

mk 〈f, gk〉 〈gk, f〉 =
∑

k

mk |〈f, gk〉|2 > 0

2

The condition that the coefficients of the symbol have to be positive is nec-
essary for the general case, as can be seen for an ONB. If one coefficient is
zero or negative, the inner product can be zero or negative. So there is no
other symbol such that the multiplier is positive for all frames.

We can now use Lemma 1.1.57 for frame multiplier:

Proposition 1.3.17 Let {gk} be a frame for H. Let {mk} be a semi-normalized
sequence with bounds a, b. Then the multiplier Mm,gk

is just the frame oper-
ator of the frame {√mkgk} and so is positive, self-adjoint and invertible.

Proof:
Mm,gk

=
∑

k

mk 〈f, gk〉 fk =
∑

k

〈f,√mkgk〉
√
mkg

′
k

This means M{gk} = S{√mkgk}, as by Lemma 1.1.57 we know that {√mkgk}
is a frame. So the operator is positive, surjective and invertible. 2

Clearly the symbol is not in c, so the operator is not compact. For infinite
dimensional spaces no compact operator is invertible.

1.3.6 Changing The Ingredients

A frame multiplier clearly depends on the chosen symbol, analysis and syn-
thesis frame. A natural question arises, when we ask, what happens if these
items are changed. Are the frame multipliers similar to each other if the
symbol or the frames are similar to each other (in the right topology)? The
next result answers this question:

Theorem 1.3.18 Let M be a multiplier for the Bessel sequences {gk} and
{fk}. Then the operator M depends continuously on m, gk and fk, in the

following sense. Let (g
(l)
k ) and (f

(l)
k ) be sequences indexed by l ∈ N.

1. Let m(l) → m in (l∞, l2, l1) then

Mm(l),gk,fk
→Mm,gk,fk

in (Op,HS, tr)

.
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2. (a) Let m ∈ l1 and let the sequences (g
(l)
k ) be Bessel sequences con-

verging uniformly to (gk), so ∀ǫ∃N such that
∥∥∥g(l)

k − gk

∥∥∥
H
< ǫ for

all l ≥ N for all k. Then

∥∥∥M
m,g

(l)
k
,fk

−Mm,gk,fk

∥∥∥
trace

→ 0

(b) Let m ∈ l2 and let the sequences (g
(l)
k ) converge to (gk) in an l2

sense, meaning ∀ǫ∃N such that
∑
k

∥∥∥g(l)
k − gk

∥∥∥
2

H
< ǫ for all l ≥ N .

Then ∥∥∥M
m,g

(l)
k
,fk

−Mm,gk,fk

∥∥∥
HS

→ 0

(c) Let m ∈ l∞ and let the sequences (g
(l)
k ) converge to (gk) in an l1

sense, meaning ∀ǫ∃N such that
∑
k

∥∥∥g(l)
k − gk

∥∥∥
H
< ǫ for all l ≥ N .

Then ∥∥∥M
m,g

(l)
k
,fk

−Mm,gk,fk

∥∥∥
Op

→ 0

3. For Bessel sequences (f
(l)
k ) converging to (fk), corresponding properties

like in 2. apply.

4. (a) Let m(l) → m in l1 and let the sequences (g
(l)
k ) respectively (f

(l)
k )

be Bessel sequences with B(l) and B′(l) as Bessel bounds such that
there is a common upper frame bound for all l ≥ N1, B and B′,
i.e. B(l) ≤ B (resp. B′(l) ≤ B′). Let them converge uniformly to

(gk) respectively (fk), so ∀ǫ∃N such that
∥∥∥g(l)

k − gk

∥∥∥
H
< ǫ for all

l ≥ N for all k. Then

∥∥∥M
m(l),g

(l)
k
,f

(l)
k

→Mm,gk,fk

∥∥∥
trace

→ 0

(b) Let m(l) → m in l2 and let the Bessel sequences (g
(l)
k ) respectively

(f
(l)
k ) converges to (gk) respectively (fk) in an l2 sense, meaning

∀ǫ∃N such that

√∑
k

∥∥∥g(l)
k − gk

∥∥∥
2

H
< ǫ for all l ≥ N . Then

∥∥∥M
m,g

(l)
k
,fk

→Mm,gk,fk

∥∥∥
HS

→ 0

68



(c) Let m(l) → m in l∞ and let the Bessel sequences (g
(l)
k ) respectively

(f
(l)
k ) converges to (gk) respectively (fk) in an l1 sense, meaning

∀ǫ∃N such that
∑
k

∥∥∥g(l)
k − gk

∥∥∥
H
< ǫ for all l ≥ N . Then

∥∥∥M
m,g

(l)
k
,fk

→Mm,gk,fk

∥∥∥
Op

→ 0

Proof:
1.) For a sequence of symbols this is a direct result of 1.3.13 and

∥∥Mm(l),gk,fk
− Mm,gk,fk

∥∥
HS =

∥∥∥G(m(l)−m),gk,fk

∥∥∥
HS

1.3.13

≤
∥∥m(l) −m

∥∥
2

√
BB′

The result for the operator and infinity norm respectively trace and l1 norms
can be proved in an analogue way.

2.) For points (b) and (c) we know from Corollaries 1.1.63 and 1.1.64
that the sequences are Bessel sequences. For all the norms (Op,HS, tr)
‖gk ⊗ fk‖ = ‖gk‖H ‖fk‖H and so

∥∥∥
∑

mkg
(l)
k ⊗ fk −

∑
mkgk ⊗ fk

∥∥∥ =
∥∥∥
∑

mk

(
g

(l)
k − gk

)
⊗ fk

∥∥∥ ≤

≤
∑

k

|mk|
∥∥∥g(l)

k − gk

∥∥∥
H

√
B′ = (∗)

case a : (∗) ≤
√
B′

(
∑

k

|mk|
)

sup
l

{∥∥∥g(l)
k − gk

∥∥∥
H

}
≤

√
B′ ‖m‖1 ǫ

case b : (∗) ≤
√
B′
√∑

k

|mk|2
√∑∥∥∥g(l)

k − gk

∥∥∥
2

H
≤

√
B′ ‖m‖2 ǫ

case c : (∗) ≤
√
B′ ‖m‖∞

∑∥∥∥g(l)
k − gk

∥∥∥
H
≤

√
B′ ‖m‖∞ ǫ

3.) Use a corresponding argumentation for f
(l)
k .

4.) For points (b) and (c) Corollary 1.1.62 gives us the condition that
there are common Bessel bounds for l ≥ N1, B and B′.

∥∥∥M
m(l),g

(l)
k
,f

(l)
k

−Mm,gk,fk

∥∥∥ ≤

≤
∥∥∥M

m(l),g
(l)
k
,f

(l)
k

−M
m,g

(l)
k
,f

(l)
k

∥∥∥+
∥∥∥M

m,g
(l)
k
,f

(l)
k

−M
m,gk,f

(l)
k

∥∥∥+
∥∥∥M

m,gk,f
(l)
k

−Mm,gk,fk

∥∥∥ ≤

≤ ǫ
√

BB′ + ‖m‖ ǫ
√

B′ + ‖m‖
√
Bǫ = ǫ ·

(√
BB′ + ‖m‖

(√
B′ +

√
B
))
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for an l bigger than the maximum N needed for the convergence conditions.
This is true for all pairs or norms (Op,∞), (HS, l2) and (trace, l1). 2

Remark: For item 4(a) it is sufficient if there is common bound for the norm
of the frame elements, following the remark right after Theorem 1.3.13.

1.3.7 Riesz Multipliers

1.3.7.1 From Symbol To Operator

As we have seen above, the question, whether the relation m 7→ M is injec-
tive, is very interesting. This is equivalent to the following questions: When
is the operator uniquely defined by the symbol? When is the relation σ a
function?

Compare this problem to the word problem in polynomial algebras ([7],[81]).
There the question is, when do two polynomials p =

∑
akx

k and q =
∑
bix

i

give rise to the same function. In this context the function from the ”formal”
polynomials G [X] to the polynomial functions Pk(G) is investigated. So in
this context the mapping m : l∞ → B(H) and its kernel could be investigated.

This needs further investigation, but we already know from Theorem
1.2.23 that the rank one operators gk⊗ fk form a Bessel sequence in HS. So
the question is equivalent to the question whether they form a Riesz sequence.
Following [34] we define

Definition 1.3.4 Let (gk), (γk) be Bessel sequences. We call it a well-
balanced pair if (gk ⊗ γk) forms a Riesz sequence in HS.

We call (gk) a well-balanced Bessel sequence if (gk ⊗ gk) forms a Riesz
sequence in HS.

We will show in the next section, that Riesz bases are certainly well-balanced.

1.3.7.2 Uniqueness Of The Upper Symbol

We know from Theorem 1.2.23 that for Riesz bases the family (gk ⊗ fk) is
a Riesz sequence, so in this case the question when m → Mm is injective is
answered. We can state a more general property

Lemma 1.3.19 Let (gk) be a Bessel sequence where no element is zero, and
(fk) a Riesz sequence. Then the mapping m 7→ Mm,fk,gk

is injective.

Proof: Suppose Mm,fk,gk
= Mm′,fk,gk

=⇒
∑

k

mk 〈f, gk〉 fk =
∑

k

m′
k 〈f, gk〉 fk for all f
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As fk is a Riesz basis for its span

=⇒ mk 〈f, gk〉 = m′
k 〈f, gk〉 for all f, k

Because gk 6= 0 for all k ∈ K, there exist an f such that 〈f, gk〉 6= 0. Therefore

mk = m′
k for all k

2

So if the conditions in Lemma 1.3.19 is fulfilled the Bessel sequence (gk⊗
fk) is a Riesz sequence.

1.3.7.3 Operator Norm Of Multipliers

As mention in Section 1.3.3 the multiplier for Riesz basis share some of the
nice properties of ONB multipliers.

Proposition 1.3.20 Let (gk) be a Riesz basis with bounds A,B and (fk) be
one with bounds A′, B′. Then

√
AA′ ‖m‖∞ ≤ ‖Mm,fk,gk

‖Op ≤
√
BB′ ‖m‖∞

Particularly Mm,fk,gk
is bounded if and only if m is bounded.

Proof: Theorem 1.3.13 gives us the upper bound.
For the lower bound let k0 be arbitrary, then

Mm,fk,gk
(g̃k0) =

∑

k

mk 〈g̃k0 , gk〉 fk = mk0fk0

Therefore

‖Mm,fk,gk
‖Op = sup

f∈H

{‖Mm,fk,gk
(f)‖H

‖f‖H

}
≥

≥ ‖Mm,fk,gk
(g̃k0)‖H

‖g̃k0‖H
≥ ‖mk0fk0‖H

‖g̃k0‖H
≥ |mk0|

√
A′

1√
A

≥
√
A′A |mk0|

using Theorem 1.1.7 and Corollary 1.1.34.
2
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1.3.7.4 Combination Of Riesz Multipliers

For an ONB this is clearly just the multiplier with σ = m ·m′. But this is
true for all biorthogonal sequences.

Proposition 1.3.21 Let (gk), (g′k), (fk) and (f ′
k) be Bessel sequences, such

that (f ′
k) and (gk) are biorthogonal to each other, then

(
Mm(1),fk,gk

◦ Mm(2),f ′
k
,g′

k

)
(f) = Mm(1)·m(2),fk,g

′

k

Proof: We know from Lemma 1.3.12
(
Mm(1),fk,gk

◦ Mm(2),f ′
k
,g′

k

)
(f) =

∑

k

∑

l

m
(1)
k m

(2)
l 〈f, g′l〉 〈f ′

l , gk〉 fk = (∗)

So if (f ′
l ) and (gk) are biorthogonal

(∗) =
∑

k

∑

l

m
(1)
k m

(2)
l 〈f, g′l〉 δl,kfk =

∑

k

m
(1)
k m

(2)
k 〈f, g′k〉 fk

= Mm(1)·m(2),fk,g
′

k

2

A direct consequence is

Corollary 1.3.22 Let (gk) be a Riesz sequence, then

Mm(1),g̃k,gk
◦ Mm(2),g̃k,gk

= Mm(1)·m(2),g̃k,gk

So we see that even for Riesz bases the combination of Gabor multipliers is
not trivial (like in the ONB) case, only if the basis and its dual is used for
the multiplier we get the following equality:

σ (Mm ◦ Mm′) = σ (Mm) · (Mm′)

The reverse of Corollary 1.3.22 is also true: If for a Bessel sequence, which
does not contain zero elements, the symbol of the product of any multipliers
is the product of the symbols of each multiplier, it is a Riesz Basis.

For this result we first show the following property:

Proposition 1.3.23 Let (gk) and (fk) be Bessel sequences in H. If ∀m(1),m(2) ∈
cc(K)

Mm(1),gk,fk
◦ Mm(2),gk,fk

= Mm(1)·m(2),gk,fk

then for all k, k′ either
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• fk′ = 0 or

• gk = 0 or

• 〈gk, g̃k′〉 = δkk′

Proof: Choose k0, k1 in the index set. Let m = δk0 and m̃ = δk1 .

Mm(1),gk,fk
◦ Mm(2),gk,fk

= Mm(1)·m(2),gk,fk

is in this case equivalent via equation 1.3.12 to

〈f, gk1〉 〈fk1 , gk0〉 · fk0 = δk0,k1 〈f, gk1〉 fk0 ∀ f ∈ H

1. case: Let k1 6= k0 then this means that we obtain

〈f, gk1〉 〈fk1 , gk0〉 · fk0 = 0

So either
1a.) fk0 = 0 or
1b.) 〈f, gk1〉 = 0 for all f , but then gk1 = 0, or
1c.) 〈fk1 , gk0〉 = 0

2. case: Let k1 = k0.

〈f, gk1〉 (〈fk1 , gk0〉 − 1) fk0 = 0

Either
2a.) fk0 = 0 or
2b.) 〈f, gk1〉 = 0 for all f and so gk1 = 0 or
2c.) 〈fk1 , gk0〉 = 1

2

So we can find a way to classify Riesz bases by multipliers:

Theorem 1.3.24 Let (gk) and (fk) be frames with gk 6= 0 and fk 6= 0 for
all k ∈ K. If and only if σ

(
Mm(1),fk,gk

◦ Mm(2),fk,gk

)
= σ

(
Mm(1),fk,gk

)
·

σ
(
Mm(2),fk,gk

)
for all multiplier Mm(1),fk,gk

, Mm(1),fk,gk
with m(1),m(2) finite,

then these frames are biorthogonal to each other and so are Riesz bases.

Proof: One direction is 1.3.23. The other 1.3.22. 2
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1.3.7.5 Commutation Of Multiplier

For the commutation of multipliers we get

Corollary 1.3.25 Let (gk) be a Riesz sequence, then

Mm(1),g̃k,gk
◦ Mm(2),g̃k,gk

= Mm(2),g̃k,gk
◦ Mm(1),g̃k,gk

Proof: We will use Corollary 1.3.22
(
Mm(1),g̃k,gk

◦ Mm(2),g̃k,gk

)
(f) =

∑

k

m
(1)
k m

(2)
k 〈f, g̃k〉 gk

On the other hand
(
Mm(2),g̃k,fk

◦ Mm(2),f̃k,gk

)
(f) =

∑

l

m
(2)
l m

(1)
l 〈f, g̃l〉 gl

2

1.3.7.6 Injectivity And Surjectivity

Using Lemma 1.3.4 in the case of Riesz basis means that a multiplier Gm,gk,gk

can never be surjective, if the symbol is in l2. Also if the symbol is not zero,
the multiplier is injective:

Corollary 1.3.26 A Hilbert Schmidt multiplier with Riesz bases is

1. not surjective.

2. injective, if and only if the symbol m is non-zero everywhere.

Proof: Mm = D ◦Mm ◦C, D and C are bijective. And so Mm is injective
respectively surjective if Mm is. 2

The last property is true for all operator classes:

Lemma 1.3.27 Let (fk) and (gk) Riesz Bases. Let M = Mm,gk,fk
. Then M

is injective ⇐⇒ mk 6= 0 for all k.

Proof: As (fk) is a Riesz basis

Mf = Mg ⇐⇒ mk · 〈f, gk〉 = mk · 〈g, gk〉 ⇐⇒ mk · (〈f, gk〉 − 〈g, gk〉) = 0

Supposemk 6= 0 for all k ∈ K =⇒ 〈f, gk〉 = 〈g, gk〉 As gk is a frame =⇒ f = g.

Suppose mk′ = 0, let ck =

{
d k = k′

〈f, gk〉 otherwise
. As (gk) is a Riesz

basis, there is a g such that 〈g, gk〉 = ck. But then Mf = Mg. This is a
contradiction to M being injective.

2
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1.3.7.7 Inverse Riesz Multiplier

We can now ask, when is a multiplier invertible, or more precise when is the
inverse another multiplier. Clearly in infinite dimensional spaces no compact
operator is invertible, so the symbol can not be in c0.

Proposition 1.3.28 Let (gk) and (fk) be Riesz bases and let the symbol m
be semi-normalized. Then

M−1
mk,fk,gk

= M 1
mk

,g̃k,f̃k

Proof: Lemma 1.3.12 tells us that

(
Mm,fk,gk

◦ M 1
m
,g̃k,f̃k

)
(f) =

∑

k

∑

l

mk
1

ml

〈
f, f̃l

〉
〈g̃l, gk〉 fk =

=
∑

k

∑

l

mk
1

ml

〈
f, f̃l

〉
δl,kfk =

∑

k

mk
1

mk

〈
f, f̃k

〉
fk = f

2

For frames which are not Riesz bases, this proposition could give an idea
how to find an approximation of the inverse operator. See [63] Section 14.1
where something similar for pseudodifferential operators is mentioned. Also
see Section 3.4 where we will investigate a possibility to approximate the
inverse of a non-diagonal matrix by diagonal matrices.

1.3.8 The Identity As Multiplier

The question in this section is: Can the identity be described as multiplier?
For infinite dimensional spaces we already know, that the symbol cannot
belong to c0, if the identity is a multiplier. Due to Theorem 1.3.13 multipliers
with symbols in c0 are compact, but the identity is compact only in finite
dimensional spaces.

We can show

Lemma 1.3.29 If and only if the identity is a multiplier for the Bessel se-
quence {gk} with constant symbol c 6= 0, then {gk} is a tight frame.

Proof: If c = 0 obviously Mm ≡ 0. If the identity I ≡ 0, the space is a
trivial vector space.

mk = c⇔ Mm =
∑

cgk ⊗ gk = c · S
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c · S = I ⇔ S =
1

c
I ⇔ {gk} tight with A =

1

c
2

The question of when the identity is a frame multiplier is identical to the
one, when a frame can be made tight be applying weights for example found
in [101].

In the case of regular well-balanced Gabor frames, it is shown in [34] that
if the identity can be written as multiplier for the frame {gk}, its symbol is a
constant sequence. Then Lemma 1.3.29 is clearly equivalent to: The identity
is a multiplier if and only if {gk} is a tight frame. A simple exercise shows
that this is not possible for general frames:

Example 1.3.1 :

Let {ei|i = 1, 2, ..} be an ONB for H. Take e0 = e1 + e2. Then
{e0, e1, e2, ...} is a frame with the bounds 1 and 2. The identity can be de-
scribed as multiplier with m = (0, 1, 1, 1, 1, ....), but not as one with constant
symbol. Suppose the multiplier Mc is the identity, then

e3 = Id(e3) = Mc(e3) =
∞∑

k=0

c 〈e3, ek〉 ek = c · e3

and therefore c = 1. But

M1(e1) = 1 · 〈e1, e0〉 e0 + 1 · 〈e1, e1〉 e1 = 〈e1, e1 + e2〉 (e1 + e2) + e1 =

= 〈e1, e1〉 (e1 + e2) + e1 = 2e1 + e2 6= e1

1.3.9 Approximation Of Hilbert-Schmidt operators

We have investigated a certain class of operators, the frame multipliers. We
now want to find the best approximation of operators in this class.

1.3.9.1 The Lower Symbol

We know from Theorem 1.2.23 that for Bessel sequences (gk) and (fk) the
family (gk ⊗ fk) is again a Bessel sequence. So the synthesis operator is well
defined:

Cgk⊗fk
: HS → l2 with C(T ) =

〈
T, gk ⊗ fk

〉
HS
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Using Theorem 1.2.28 we can express that inner product as

C(T ) =
〈
T, gk ⊗ fk

〉
HS =

〈
Tfk, gk

〉
H

So we define

Definition 1.3.5 Let (gk) and (fk) be Bessel sequences for H, then the
lower symbol of an operator T ∈ HS is defined as

σL(T ) = 〈Tfk, gk〉H
The function σL : HS → l2 is just the synthesis operator of the Bessel

sequence gk ⊗ fk in HS and therefore well defined in l2. The name is de-
served in the case when the rank one operators (gk ⊗ fk) fulfill the lower
frame boundary condition for elements in its closed span. These elements
form a frame sequence in this case. Following 1.1.14 we can find the best
approximation by using the analysis and the dual synthesis operator for the
projection on the closed span of the elements V = span

{
gk ⊗ fk

}
, which are

exactly those HS operators that can be expressed as frame multipliers with
the given frames. Let Qk be the canonical dual frame of gk ⊗ fk in V then
the best approximation is

PV (T ) =
∑

k

〈
T, gk ⊗ fk

〉
HS Qk =

∑

k

σL(T )Qk

Due to Proposition 1.1.9 we know ‖σU‖2 ≤ ‖σL(T )‖2 for any other coeffi-
cients σU such that the projection PV can be expressed in this way and hence
the name ’lower symbol’. Also for bounded operators T which are not in HS
this inner product is defined and bounded by ‖T‖Op

√
BB′.

An interesting result is

Lemma 1.3.30 Let (gk) be a well-balanced Bessel sequence, which is not
a Riesz sequence. Then none of the biorthogonal sequences Qk in HS of
Pk = gk ⊗ gk can consist only of rank one operators γk ⊗ γk.

Proof: Let suppose the opposite Qk = γk ⊗ γk for all k

〈Pk, Ql〉HS = 〈gk ⊗ gk, γl ⊗ γl〉HS = 〈gk, γl〉H · 〈γl, gk〉H = |〈gk, γl〉H|
2

Therefore (gk) has a biorthogonal sequence (γk), which is a contradiction.
2

Let us repeat: Section 1.2.3.2 tells us that the rank one operators (gk⊗f j)
form a Bessel sequence, frame or Riesz basis if the sequences (gk) and (fk)
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do. Therefore we have deduced that for Bessel sequences and Riesz bases the
operators (gk ⊗ fk) form a Bessel sequence or Riesz sequence. Subsequences
of a frame do not have to be frame sequences, so it is not possible to deduce
a similar property like above for frames. Also while Riesz bases in H give rise
to Riesz bases in HS, it would be interesting to classify all Bessel sequences
respectively frames where this is true. In the regular Gabor case for example
it can be shown [12] that for Bessel sequences (gλ) and (fλ) the family is
either a Riesz sequence or no frame at all.

For the general case, due to the lack of a underlying group structure,
such a classification seems hard to find. Only for orthonormal bases the
connection is easy:

Lemma 1.3.31 Let (gk) be a Bessel sequence. If and only if it is an ortho-
normal basis, the sequence (gk ⊗ gk) is an orthonormal system.

Proof:
〈gk ⊗ gk, gl ⊗ gl〉HS = δk,l ⇐⇒
〈gk, gl〉H · 〈gl, gk〉H = δk,l ⇐⇒

|〈gk, gl〉H|
2 = δk,l ⇐⇒

〈gk, gl〉H = δk,l

2

1.3.9.2 Perturbation For HS Riesz Sequences

The perturbation results in Section 1.1.12 give us tools to formulate a per-
turbation result for the rank one operators in HS:

Theorem 1.3.32 Let (gk), (γk) be a well-balanced pair of Bessel sequences

with Bessel bounds B and B′. Let (f
(l)
k ), (ϕ

(l)
k ) be sequences such that for all

ǫ there exists an N(ǫ) with

∑

k

∥∥∥gk − f
(l)
k

∥∥∥
2

H
< ǫ and

∑

k

∥∥∥γk − ϕ
(l)
k

∥∥∥
2

H
< ǫ

for all l ≥ N(ǫ), then the Bessel sequences ((f
(l)
k ⊗ ϕ

(l)
k )) also form a Riesz

sequence.
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Proof: From Corollary 1.1.63 we know that for l ≤ N(A) (fk)
(l) is a Bessel

sequences, frame respectively a Riesz basis and C
f
(l)
k

→ Cgk
, D

f
(l)
k

→ Dgk
and

S
f
(l)
k

→ Sgk
for l ≥ max {N(A), N(1)}, l → ∞.

So we know that (gk ⊗ γk) and (f
(l)
k ⊗ ϕ

(l)
k ) are Bessel sequences for l ≥

N(A).
(
Dgk⊗γk

−D
f
(l)
k

⊗ϕ(l)
k

)
(c) = Dgk

◦Mc ◦ Cγk
−D

f
(l)
k

◦Mc ◦ Cϕ(l)
k

⇒
∥∥∥
(
Dgk⊗γk

−D
f
(l)
k

⊗ϕ(l)
k

)
(c)
∥∥∥
HS

=
∥∥∥Dgk

◦Mc ◦ Cγk
−D

f
(l)
k

◦Mc ◦ Cϕ(l)
k

∥∥∥
HS

=

=
∥∥∥Dgk

◦Mc ◦ Cγk
−D

f
(l)
k

◦Mc ◦ Cγk
+D

f
(l)
k

◦Mc ◦ Cγk
−D

f
(l)
k

◦Mc ◦ Cϕ(l)
k

∥∥∥
HS

≤

≤
∥∥∥Dgk

−D
f
(l)
k

∥∥∥
Op

‖Mc ◦ Cγk
‖Op +

∥∥∥D
f
(l)
k

◦Mc

∥∥∥
Op

∥∥∥Cγk
− C

ϕ
(l)
k

∥∥∥
Op

= (∗)

For l ≥ N ′ = max{N(A), N(ǫ)}.

(∗) ≤ ǫ ‖Mc‖l2→l2 ‖Cγk
‖Op +

∥∥∥D
f
(l)
k

∥∥∥
Op

‖Mc‖l2→l2 ǫ

From Corollary 1.1.62 we know that there is a N(1) such that
∥∥∥D

f
(l)
k

∥∥∥
Op
<

√
B + 1 for l ≥ N(1). So using Lemma 1.3.3 we get

(∗) ≤ ǫ ‖c‖2

√
B′ +

√
B + 1 ‖c‖2 ǫ = ǫ · ‖c‖2

(√
B′ +

√
B + 1

)

for all l ≥ N = max{N(1), N(A), N(ǫ)}.
Therefore∥∥∥Dgk⊗γk

−D
f
(l)
k

⊗ϕ(l)
k

∥∥∥
l2→HS

≤ ǫ ·
(√

B′ +
√
B + 1

)

Following Proposition 1.1.61 we can finish the proof as
∥∥∥Dgk⊗γk

−D
f
(l)
k

⊗ϕ(l)
k

∥∥∥
c2c→HS

≤
∥∥∥Dgk⊗γk

−D
f
(l)
k

⊗ϕ(l)
k

∥∥∥
c2c→HS

≤ ǫ′

2

Again this can be specialized to

Corollary 1.3.33 Let (gk), (γk) be Bessel sequences with Bessel bounds B
and B′, such that (gk⊗γk) form a Riesz sequence . Let (fk), (ϕk) be sequences
such that for all ǫ there exists an N(ǫ) with

∑

k

∥∥∥gk − f
(l)
k

∥∥∥
H
< ǫ and

∑

k

∥∥∥γk − ϕ
(l)
k

∥∥∥
H
< ǫ

for all l ≥ N(ǫ), then the Bessel sequences ((f
(l)
k ⊗ ϕ

(l)
k )) also form a Riesz

sequence.
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1.3.9.3 Approximation Of Matrices By Frame Multipliers

In infinite-dimensional spaces not every subsequence of a frame is a frame se-
quence, but in the finite-dimensional case, all sequences are frame sequences.
So we can use the ideas in Section 1.1.10.1 and apply it to frame multipliers.

We want to find the best approximation (in the Frobenius norm) of a
m × n matrix T by a frame multiplier with the frames (gk)

K
k=1 ⊆ Cn and

(fk)
K
k=1 ⊆ Cm. This whole section is a generalization of the ideas in [50].

Algorithm:

1. Inputs: T, D, Ds

T is a m × n matrix, D is the n × K synthesis matrix of the frame
(gk) and so following Section 1.2.1.3 this means that the element of the
frame are the columns of D. Ds is the synthesis matrix of the frame
(fk). Often we will use the case (fk) = (gk) so Ds = D by default.

2. Lower Symbol :

Using Lemma 1.2.26 the most efficient way to calculate the inner prod-
uct

〈
T, gk ⊗ fk

〉
HS is 〈Tfk, gk〉Cn . This can be implemented effectively

using the matrix multiplication by

(MATLAB :) lowsym(i) = conj(D(:,i)’*(T*Ds(:,i)));

3. Hilbert Schmidt Gram Matrix :

We calculate the Gram matrix of (gk ⊗ fk)

(GHS)l,k =
〈
gk ⊗ fk, gl ⊗ f l

〉
HS = 〈gk, gl〉H ·〈fl, fk〉H = (Ggk

)l,k ·(Gfk
)k,l

(MATLAB :) Gram = (D’*D).*((Ds’*Ds).’);

If (gk) = (fk) then
(GHS)l,k = |〈gk, gl〉H|

2

It is more efficient to use this formula in
(MATLAB :) Gram = abs((D’*D)).^2;

as this has complexity, using Lemma 1.2.26, ∼ K2 · (n2 + 2) compared
to the original calculation with ∼ K2 · (n2 +m2 + 1).

4. Upper Symbol :

Using Theorem 1.1.52 we get the coefficients of the approximation by
using the pseudoinverse of the Gram matrix. In the case of frame mul-
tipliers the coefficients are an upper symbol σ.
(MATLAB :) uppsym = pinv(Gram)*lowsym;
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5. Outputs: TA, uppsym

For the calculation of the approximation we just have to apply the
synthesis operator of the sequence (gk ⊗ fk) to the upper symbol.

TA = PV (T ) =
K∑

k=1

σkgk ⊗ fk

From Lemma A.4.42 we know that the matrix of the operator gk ⊗ fk
can just be calculated by (gk)i ·

(
fk
)
j
.

(MATLAB :) P = D(:,i)*Ds(:,i)’;

For an implementation of this algorithm in MATLAB see Section B.1.

Example 1.3.2 :

We will look at two simple example in C2.

1. Let A =

(
3 0
0 5

)
. This is clearly a multiplier for the standard or-

thonormal basis of C2. The sequence f1 =
(

1
2
,
√

3
2

)
, f2 =

(√
3

2
,−1

2

)

is also an ONB. But the best approximation of A with this basis is

PV (A) =

(
3.7500 0.4330
0.4330 4.2500

)
. So this is an example that not even

for ONBs a frame multiplier for one basis stays a frame multiplier for
another one.

2. Let T = IdC2 . and let D =

(
cos(30◦) 1 0
sin(30◦) 1 −1

)
. This is a frame

with bounds A = 0.5453, B = 3.4547 and therefore not tight. Still the
identity can be approximated perfectly (up to numerical precision) with
the coefficients σ = (3.1547,−1.3660, 1.5774). So this is an example,
where the identity is a frame multiplier for a non-tight system.

The MATLAB-codes for these examples can be found in the appendix in
Section B.1.2.

Example 1.3.3 :

We will now use this algorithm for the Gabor case, as a connection to the
next chapter. We are using a Gauss window in Cn with n = 32. We are
changing the lattice parameters a and b. The resulting approximation of the
identity can be found in Figure 1.4.
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1. (g, a = 2, b = 2). This is nearly a tight frame with the lower frame
bound A = 7.99989 and the upper frame bound B = 8.00011. As
expected the identity is approximated very well.

2. (g, a = 4, b = 4) : This frame is not tight anymore, as A = 1.66925 and
B = 2.36068 and we can see that the approximation is deviating from
identity.

3. (g, a = 8, b = 8) : This is not a frame anymore, but a Bessel sequence
with B = 1.18034. At least some of the structure (the diagonal domi-
nance) is still kept.

4. (g, a = 16, b = 16) : This is not a frame anymore, but a Bessel sequence
with B = 1.00001. All structure is (more or less) lost.

This algorithm is not very efficient for the Gabor case as the special structure
is not used. For the regular case the algorithm presented in [50] is preferable.
We will try to speed up this algorithm for irregular Gabor systems in Section
2.7.3.

The MATLAB-codes for these examples can be found in the appendix in
Section B.1.3.
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Figure 1.4: Using the algorithm for approximation with frame multipliers in
the Gabor case: Approximating the identity by Gabor multiplier with Gauss
window (n = 32) and changing lattice parameters. Top Left: (a = 2,b = 2),
Top Right: (a = 4,b = 4), Bottom Left: (a = 8,b = 8), Bottom Right:
(a = 16,b = 16)
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Chapter 2

Gabor Frames And Multipliers

The Fourier Transformation, refer to Section A.4.7, is a well known math-
ematical tool to analyze the frequency content of a signal. Due to the very
efficient algorithms of the fast Fourier transformation, FFT, see e.g. [126],
many applications and developments are possible. If humans listen to a
sound, a voice or music, they do not only hear frequencies and their ampli-
tudes but also their dynamic development. So it is very natural to search for
a joint time frequency analysis, for a two dimensional representation, that
shows the frequency and time information of the signal. This is not possible
in an exact way, as with the uncertainty principle there is always a trade off
between the precision in time and in frequency, see [63] and Theorem 2.1.15.

A well known method for a time frequency representation is the short
time Fourier transformation, STFT, see Definition 2.1.1. One possibility to
look at this method is to take the signal x(τ) and multiply it with a window
function w(τ − t) to get a version of the signal that is concentrated at the
time t (if the window is chosen accordingly, centered at zero). Then the
Fourier transformation is applied to the result:

Xw(t, ω) =

∞∫

−∞

x(τ)w(τ − t)e−i2πωτdτ

For the moment let us ignore the question, when and where this is well-
defined or can be generalized, at the moment. And let us suppose that the
window w(t) is real-valued.

In application (and this work) the discrete finite case is important, so the
finite, discrete equivalent for the above definition at the time sample n and
the frequency bin k is

Xw[n, k] =
N−1∑

m=0

x[m]w[m− n]e
−2πikm

N
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which is the (regularly) sampled version of the continuous STFT using the
sampling points τ = n · T , ω = k

N ·T . For more on the discrete finite case see
Chapter 3.

Another possibility to look at the STFT is to see it as a filter bank. These
filters f(t), as convolution operators x 7→ (x ∗ f), have certain properties,
they have to add up to 1, they have to have all the same frequency response
characteristics except the center frequency and these center frequencies have
to be evenly spaced. Of course these filters stand in close connection to the
windowing function of the ”Fourier view”. A schematic drawing of this filter
bank is given in Figure 2.1.

x(t) r

-

-

h·?
sin(2πft)

h·
6

cos(2πft)

-

-

filter
f(t)

filter
f(t)

-

-

An

Bn

Figure 2.1: nth channel of a channel vocoder

If the two outputs An and Bn are seen as the real and imaginary part
of a complex number, this is exactly the result of the STFT. If only the
amplitude,

√
A2
n +B2

n, is worked with, the STFT is the equivalent of a so
called Channel Vocoder [61]. This method is called Phase Vocoder, if the
phase is not ignored, but its temporal difference is used to get a better
estimation of the frequency of sinusoidal parts. It is a very common tool in
modification of audio signals, see e.g. [98] [8]. For an investigation of the
equivalence between Gabor analysis and filter-banks see [14].

A different view point than the two above (which are also those two men-
tioned in [32]) can be taken: the Gabor way, in which time and frequency are
seen as symmetric. In this context there is no ordering of time and frequency
processing, it is not an analysis first over time and then over frequency or
the other way around. The signal is projected on atoms, that have a certain
time frequency spread. These atoms are found by time and frequency shifted
versions of a function g(t), the Gabor atom. This atom again corresponds
with the window and the filter mentioned above. So the projection of the
signal x(t) on the shifted atom MkbTlag(t) with a = T, b = 1

N ·T yields the
coefficients

f 7→ 〈f,MkbTlag〉
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The time frequency spread of the shifted atoms is depicted in Figure 2.2:

Figure 2.2: If g is centered around zero, the atoms gm,n are centered around
(na,mb). (from [44])

All three view points are mathematically (and therefore as algorithms)
equivalent, refer to Lemma 2.1.4, but give three different methods to analyze
problems. The Fourier view is useful e.g. for implementing an algorithm,
the filter bank view to know what to expect acoustically and the Gabor
view gives a compact mathematical description so that certain properties of
windows can be found.

In applications it is often interesting to reduce the amount of data and
therefore the number of computations, which means reducing the redundancy
of the representation. The redundancy can be defined for this setting as

red =
1

∆f · ∆t

It is clear from the statements above that the redundancy of the full STFT
in the finite discrete setting is

red =
1

∆f · ∆t =
N · T
T

= N

The full STFT in the finite discrete case of CN has N2 entries. So we describe
an N -dimensional vector by an N2-dimensional one, which is a factor N .
Hence this factor is called redundancy, see also Theorem 2.1.14.

To reduce it, one can (in the Fourier view) calculate the spectrum not
at every time step, but only every H seconds (or samples). H is called hop
size. In the filter view this is a down sampling of the filtered signal. In the
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Gabor view many different choice for a sampling lattice are possible. If not
the full STFT but a sampled version of it is used, the method is called Gabor
transform. We will investigate Gabor systems in Section 2.1.2.

If the goal is modification of signals, like in an masking algorithm, for
every analysis method a synthesis method is needed. In this context it is
the overlap add method, the synthesis filter bank respectively oscillator bank,
or the projection on dual atoms, depending on the chosen viewpoint. For
synthesis again a window (filter, atom) γ has to be chosen, although in some
practical application ”no” window (γ ≡ 1) or the analysis window (γ = g)
can be chosen. If for the chosen parameters the Gabor system (g, a, b) forms a
frame, this is a sufficient condition when perfect reconstruction from discrete
samples of the STFT is possible.

Gabor [60] proposed, that in the case of Gauss windows the redundancy
could be reduced to red = 1. It could be shown later that these functions
constitute a frame if and only if red < 1. This has the consequence that there
is a synthesis atom, which guarantees perfect reconstruction. The question
whether certain windowing functions form frames for certain redundancies
could be answered for many systems. It is clear that there is a kind of
”Nyquist criteria” for Gabor frames, as it has be shown that no window
function can be a frame for red > 1, see also Theorem 2.1.14. In applica-
tion an overlap of 75%, i.e. a redundancy of 4, and a ”standard” window
function like a Hanning or Blackman Harris window will lead very often to
satisfactory results. It is still an open problem to classify, when a Gabor
system constitutes a frame. For certain classes of windows, there are posi-
tive results, for which lattice parameters frames are formed. Refer to Section
2.1.2.

If one is mainly interested in perceptual features, any part of the signal
that cannot be heard is obviously redundant: So the representation can be
made more sparse by restricting it to to the psychoacoustical relevant parts.
This is exactly what masking filters do. We will investigate this issue further
in chapter 4.

Many modern tools rely on signal processing algorithms. Due to the fast
algorithm of the FFT in the last 50 years many practical application of time-
invariant filters have been found. In recent years a lot of attention has been
given to time-variant filtering, cf. e.g. [70]. One way to implement a time-
variant filter is to use a multiplier on the STFT coefficients. For the sampled
version we will have Gabor multipliers, which we will look at in Section 2.3.

There are many other time frequency representations like the wavelet
analysis [29], Gabor analysis with irregular lattices, cf. Section 2.2 or the
Wigner Ville representation [86].
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In this chapter we will first look at the basic definitions of the STFT and
the Gabor transform in Section 2.1. In Section 2.2 we will shortly investigate
irregular Gabor systems. In Section 2.3 we will use the theory developed
in Section 1.3 and 2.1.2 for Gabor multipliers, most notable irregular Gabor
multipliers.

2.1 Introduction And Preliminaries

2.1.1 Short Time Fourier Transformation

The well known definition of the STFT is

Definition 2.1.1 Let f ,g 6= 0 in L2
(
Rd
)
, then we call

Vgf(t, ω) =

∫

Rd

f(x)g(x− t)e−2πiωxdx .

the Short Time Fourier Transformation (STFT) of f with the win-
dow g.

In applications often the quadratic representation |Vgf(t, ω)|2 is used.
This is called the spectrogram. For a picture of a typical spectrogram of an
audio signal see Figure 2.3.

We can give alternate ways to describe the STFT. For that we need the
following transformation

Definition 2.1.2 Let f : Rd → C. Then define for τ and ω ∈ R the trans-
lation by τ

(Tτf) (t) = f(t− τ)

and the modulation by ω

(Mωf) (t) = e2πiωtf(t)

The operators π ((τ, ω)) = MωTτ are called time-frequency shifts.

In the context of time frequency we will use the notation ω(t) (and sym-
metrically t(ω)) for the factor e2πiωt. Especially in the context of irregular
Gabor systems we will use the notation λ = (t, ω) ∈ R2d for time-frequency
points. The transformations Mω and Tτ are clearly unitary operators with
M∗

ω = M−1
ω = M−ω and T ∗

τ = T−1
τ = T−τ .

Let us collect the most important properties of this operators which can
be found for example in [63]
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Figure 2.3: The STFT: The spectrogram of a violin sound (screenshot of
STX [96]). Left Top: the part of the signal at the cursor. Right Top: the
spectrum at the cursor. Middle: the spectrogram. Bottom: the whole signal
in the time domain

Lemma 2.1.1 1.
MωTτ = ω(τ)TτMω

2.
‖MωTτf‖p = ‖f‖p

3.
(̂Mωf) = Tωf̂ (̂Tτf) = M−τ f̂

where f 7→ f̂ is the Fourier transformation.

4.
lim
τ→0

‖Tτf − f‖2 = 0

5.
lim
ω→0

‖Mωf − f‖2 = 0
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6.
π∗(τ, ω) = ω(τ)π(−τ,−ω)

7.
π(τ1, ω1) ◦ π(τ2, ω2) = ω2(τ1)π (τ1 + τ2, ω1 + ω2)

Banach spaces, which fulfill point 2., 4. and 5., i.e. spaces, where
the translations and modulations are isometric and strongly continuous, are
called time-frequency homogeneous.

As a direct consequence of the last lemma and the fact that Mω and Tτ
are unitary operators we get

Corollary 2.1.2 1.
lim
τ→τ0

‖Tτf − Tτ0f‖2 = 0

2.
lim
ω→ω0

‖Mωf −Mω0f‖2 = 0

Let us collect two more results needed in the following:

Corollary 2.1.3 For λ = (τ, ω) and λ′ = (τ ′, ω′)

1.
π∗(λ) ◦ π(λ′) = (ω + ω′)(τ)π

2.
π∗(λ) = π−1(λ)

Proof: 1.)

π(λ)∗π(λ′)
Lem.2.1.1

= ω(τ) · π(−λ)π(λ′) =

Lem.2.1.1
= ω(τ) · ω′(−τ)π(λ′ − λ) = (ω − ω′)(−τ)π(λ′ − λ)

2.)

π∗(λ)π(λ)
Lem.2.1.1

= ω(τ) · π(−λ) ◦ π(λ) =

Lem.2.1.1
= ω(τ) · ω(−τ)π(λ− λ) == ω(0)π(0) = Id

For the opposite direction to proof can be done in an analogue way. 2

We find different ways to describe the STFT because the following result
is well-known.

Lemma 2.1.4 ([63] Lemma 3.1.1)Let f, g be in L2
(
Rd
)
, then Vg(f) is uni-

formly continuous and
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1.
Vg(f)(τ, ω) = ̂(f · Tτg)(ω)

2.
Vg(f)(τ, ω) = 〈f,MωTτg〉

3.
Vg(f)(τ, ω) = e−2πix·ω (f ∗Mωg

∗) (τ)

From Item 1 we now learn that for the STFT we multiply the signal by the
window shifted by τ and then do a Fourier transformation. From item 3 we
see how to interpret it as convolution. So the initial comments in this chapter
about the equivalence of the different views have been certified.

Item 2 gives a change to generalize the idea of the STFT to other function
space respectively function spaces and their duals. For example for tempered
distributions S ′ [63], S ′

0 [42], Modulations spaces [63] or on locally compact
Abelian groups [62]. For time-frequency homogeneous function spaces a lot
of properties stay the same, see e.g. [42].

The STFT is invertible as stated in the inversion formula for the STFT.

Corollary 2.1.5 ([63] Corollary 3.2.3) Let g,γ ∈ L2
(
Rd
)

and 〈g, γ〉L2 6= 0.
Then

f(t) =
1

〈g, γ〉L2(Rd)

∫

R2d

Vgf(s, ω)γ(t− s)e2πiωtdsdω .

This is a direct consequence of the orthogonality relations for the STFT:

Theorem 2.1.6 ([63] Theorem 3.2.1) Let f1, f2, g1, g2 ∈ L2
(
Rd
)
, then Vgj

fj ∈
L2
(
R2d
)

for j = 1, 2 and

〈Vg1f1,Vg2f2〉L2(R2d) = 〈f1, f2〉L2(Rd) · 〈g1, g2〉L2(Rd)

This theorem implies

Corollary 2.1.7 ([63] Corollary 3.2.2) Let f, g ∈ L2
(
Rd
)
, then

‖Vgf‖2 = ‖f‖2 ‖g‖2

In particular, if ‖g‖2 = 1 then

‖Vgf‖2 = ‖f‖2 for all f ∈ L2
(
Rd
)

So for ‖g‖2 = 1 the STFT is an isometry from L2
(
Rd
)

to L2
(
R2d
)
.
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2.1.2 Gabor Systems

For applications discrete time-frequency representations are necessary. The
STFT is sampled at certain time-frequency points, STFT (tl, ωl). In this case
the inversion is not always possible. We will apply the theory of frames from
Section 1.1 for the sampled STFT. In this case we know that inversion is
possible, if the a frame is formed:

Definition 2.1.3 Let g ∈ L2(Rd) be a non zero function, the so called win-
dow. Given parameters α, β > 0, α is called the time and β the frequency
shift respectively. The set of time-frequency shifts

G(g, α, β) = {TαkMβng : k, n ∈ Zd}

is called a Gabor system. If it is a frame, it is called Gabor frame.
The set {(αk, βn) : k, n ∈ Zd} is called the lattice.

Other sampling sets are possible, either with a group structure, see e.g. [99]
or without, see Section 2.2.

It can be shown [63] that the dual frame for a Gabor frame is just the
Gabor system of the dual window g̃ = S−1g. And S−1

g = Sg̃.
The Gabor frame operators are time frequency operators, in the sense

that the analysis operator is just the STFT, sampled at the time frequency
points (αk, βn), because the inner product 〈f, TαkMβng〉 = Vgf(αk, βn).

Similar to the general frame case we will write the (associated) analysis
operator for the window g as Cgf = {〈f, gk,n〉}, the (associated) synthesis
operator as Dγf =

∑
k,n

ck,ngk,n and Sg,γ = DgCγ for the (associated) frame

operator.

An important window class is the following

Definition 2.1.4 Let Q = [0, 1]d. A function g ∈ L∞ (Rd
)

belongs to the
Wiener space W = W (Rd), if

‖g‖W =
∑

n∈Zd

ess sup
x∈Q

|g(x+ n)| <∞

The subspace of continuous functions of W will be denoted by W0.

These spaces are special cases of Amalgam spaces, refer to Section 2.1.3.1.
This norm can also be written as ‖g‖W =

∑
n∈Zd

‖gTnχQ‖∞. As all bounded

functions with compact support are in W , we know that W is a subspace of
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every Lp(Rd) for 1 ≤ p < ∞. W is even densely embedded in these Lp(Rd)
[63].

This window class is important, because it can be shown, that for this
class of windows the analysis, synthesis and frame operator are bounded
operators, and so the Gabor system always forms a Bessel sequence, see [63]
chapter 6.2. Even more

Theorem 2.1.8 ([63] Theorem 6.5.1 ) Let g ∈W and let α > 0 be such that
for constants a, b > 0

a ≤
∑

k∈Zd

|g (x− αk)|2 ≤ b <∞ almost everywhere.

Then there is a value β0 > 0 depending on α such that G(g, α, β) is a Gabor
frame for all β < β0.

There are several possible way to represent the Gabor frame operator, for
the so called Walnut’s representation we need the following definition:

Definition 2.1.5 Let g, γ ∈ L2
(
Rd
)

and α, β > 0, the correlation func-
tion of the pair (g, γ) is defined as

Gn(x) =
∑

k∈Zd

g

(
x− n

β
− αk

)
γ (x− αk)

With this definition the Walnut’s representation [127] can be found

Theorem 2.1.9 ([63] 6.3.2) Let g, γ ∈ W (Rd) and let α, β > 0. Then oper-
ator Sγ,g can be represented as

Sγ,gf = β−d
∑

n∈Zd

Gn · Tn
β
f

Thus in the finite, discrete case the Gabor frame matrix has only β non-
zero side-diagonals and they are α-periodic. These n-th side-diagonals are
just the Gn defined here. In some case, i.e. when the support of g is shorter
than 1

β
, S is even diagonal. This sparse structure is important for inverting

this operator to find the canonical dual window, see Section 3.1.2.

We can find another possible representation the so called Janssen repre-
sentation [74].
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Theorem 2.1.10 ([63] Theorem 7.2.1) Let g, γ ∈ L2
(
Rd
)

such that for
α, β > 0 ∑

k,l∈Zd

∣∣∣
〈
γ, T k

β
M l

α
g
〉∣∣∣ <∞

then
Sg,γ = (αβ)−d

∑

l,n∈Zd

〈
γ, T k

β
M l

α
g
〉
T k

β
M l

α
=

= (αβ)−d
∑

l,n∈Zd

〈
γ,M l

α
T k

β
g
〉
M l

α
T k

β

In finite dimensional spaces, this representation becomes important again
and is used to define an alternative matrix norm, see Section 3.4.

This representation is important for the very useful Wexler-Raz biorthog-
onality relation, which can be used for a classification of dual windows.

Theorem 2.1.11 ([63] Theorem 7.3.1) Assume that g and γ form Gabor
Bessel sequences. Then they form dual frames if and only if

(αβ)−d
〈
γ,M l

α
Tn

β
g
〉

= δl0δn0.

In the finite-dimensional case this relation provides the tools to find a dual
window just by solving a system of equations.

Definition 2.1.6 For a given lattice Λ = αZd × βZd the lattice

Λ◦ =
1

β
Zd × 1

α
Zd

is called the adjoint lattice.

The points in the adjoint lattice can be represented by a commutation
property:

Lemma 2.1.12 Let Λ = αZd × βZd. A point λ = (τ, ω) in the phase space
Rd × Rd is in the adjoint lattice Λ◦ if and only if

(TτMω) (TαkMβl) = (TαkMβl) (TτMω)

for all k, l ∈ Zd.

As a consequence from that the Ron-Shen duality principle can be shown
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Theorem 2.1.13 ([23] Theorem 9.2.6) Let g ∈ L2
(
Rd
)

and α, β > 0. Then
the Gabor system G(g, α, β) is a frame for L2

(
Rd
)

with bounds A,B if and
only if G(g, 1

β
, 1
α
) is a Riesz sequence with bounds abA, abB.

This principle leads to the description of Gabor frames in dependency of
their redundancy, defined as red = 1

αβ
.

Theorem 2.1.14 1. ([63] Corollary 7.5.1) If G(g, α, β) is a frame for
L2
(
Rd
)
, then red ≥ 1.

2. ([63] Corollary 7.5.2) The Gabor system G(g, α, β) is a Riesz basis for
L2
(
Rd
)
, if and only if it is a frame and red = 1.

3. ([63] Corollary 7.5.2) The Gabor system G(g, α, β) is an ONB for L2
(
Rd
)
,

if and only if it is a tight frame, ‖g‖2 = 1 and red = 1.

The last theorem could be seen as a way to describe a uncertainty in the
time-frequency plane, cf. [63]. Another, clearer form of uncertainty principle
is the Balian Low Theorem :

Theorem 2.1.15 Let g ∈ L2 (R) and let α, β > 0 satisfy α · β = 1. If the
Gabor system (g, α, β) is an exact frame for L2 (R), then

‖tg(t)‖2 ‖νĝ(ν)‖2 = +∞

For more on this theorem, related phenomena and a comparison to the clas-
sical uncertainty principle see [11].

So Theorem 2.1.14 together with the Balian Low theorem tells us that no
Gabor systems can be a Riesz bases and also have a ”good” time frequency
resolution.

2.1.3 Function Spaces

2.1.3.1 Amalgam Spaces

Definition 2.1.7 A measurable function F on R2d belongs to the amalgam
space W (Lp,qm ), if the sequence of local suprema

ak,n =
∥∥F · Tk,nχ[0,1[2d

∥∥
∞

belongs to lp,qm .
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The Wiener space defined in Definition 2.1.4 is only a special case of this
definition as W = W (L1).

The above definition mixes global and local behaviors. It is possible to get
the same kind of space by using locally other norms than just the sup-norm.
This can be seen in the investigation of a more general class of amalgams,
the Wiener amalgam spaces, following [52]:

Definition 2.1.8 A Banach space B ∈ S ′ is called localizable, if

1. (B, ‖.‖B) is continuously embedded in S ′(Rd) in the weak*-topology.

2. B is isometrically translation invariant, i.e.

‖Txf‖B = ‖f‖B ∀x ∈ Rd, f ∈ B

3. C∞
c ·B ⊆ B

Definition 2.1.9 A family Ψ = {Takψ}k∈Zd is called a bounded uniform
partition of unity (BUPU), if

1. ψ ∈ L∞
c , i.e. ψ is essentially bounded and has compact support,

2.
∑
k∈Zd

Takψ(x) = 1.

The BUPU is called smooth if ψ ∈ C∞
c (Rd).

Definition 2.1.10 Let Ψ = {Takψ}k∈Zd be a smooth BUPU on Rd. Let B a
localizable Banach space. Then

W (B, lp) =



f ∈ Bloc

∣∣∣∣∣∣

(
∑

k∈Zd

‖f · Tαkψ‖pB

)1/p

<∞





is called a Wiener amalgam space.

It can be shown that this definition does not depend on the choice of the
BUPU. The smoothness-condition of the BUPU can be dropped for B =
Lp, C0 or M = C ′

0 to get an equivalent condition, cf. [52]. So for these spaces
we can use the indicator function for cubes in Rd, for an application refer
to Section 2.2.2. Clearly every amalgam space is a Wiener amalgam space
W (Lp,qm ) = W (L∞, lp,q).

For the spaces C0 and C we use the supremum norm. In this sense
W0 = W (C0, l

1). Clearly W (C0, l
p) = C0 ∩W (Lp) which is therefore densely

embedded in C0 ∩ Lp, so W (C0, l
∞) = C0.
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Proposition 2.1.16 [52] Let A,B be localizable Banach space, then

1. Aloc ⊆ Bloc =⇒ W (A, lp) ⊆ W (B, lp) for 1 ≤ p ≤ ∞.

2. W (C0, l
2) ·W (M, l∞) ⊆ W (M, l2).

3. FW (FLp, lq) ⊆ W (FLq, lp) for 1 ≤ q ≤ p ≤ ∞.

For more details on Wiener amalgam spaces see e.g. [41] or [52].

Let us collect some properties ofW (M, lp), which will be needed in Section
2.6:

Corollary 2.1.17 1. For µ ∈W (M, l∞)

‖µ‖W (M,l∞) = sup
k∈Zd

sup
‖f‖C0

=1

∣∣∣∣∣∣∣

∫

Q1(k)

fdµ

∣∣∣∣∣∣∣

2. For µ ∈ W (M, lp), 1 ≤ p <∞

‖µ‖pW (M,lp) =
∑

k∈Zd

sup
‖f‖C0

=1

∣∣∣∣∣∣∣

∫

Q1(k)

fdµ

∣∣∣∣∣∣∣

Proof: 1.) µ ∈M = C ′
0, µ : C0 → C

‖µ‖Op = sup
‖f‖C0

=1

|µ(f)| = sup
‖f‖C0

=1

∣∣∣∣∣∣

∫

Rd

fdµ

∣∣∣∣∣∣

‖µ‖W (M,l∞) = sup
k∈Zd

∥∥µ · χQ1(k)

∥∥
M

= sup
k∈Zd

sup
‖f‖C0

=1

∣∣∣∣∣∣∣

∫

Q1(k)

fdµ

∣∣∣∣∣∣∣

2.) use a similar proof as above. 2

Corollary 2.1.18 Let 1 ≤ p <∞.

W (C0(R
d), lp) ⊗W (C0(R

d), lp) ⊆ W (C0(R
2d), lp)
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Proof:

‖f ⊗ g‖pW (C0,lp) =
∑

k∈Z2d

∥∥f ⊗ g · χQ1(k)

∥∥p
C0

=
∑

(k,l)∈Z2d

∥∥f ⊗ g · χQ1(k,l)

∥∥p
∞

=
∑

k∈Zd

∑

l∈Zd

sup
(x,y)∈Q1(k,l)

|f(x) · g(y)|p ≤
∑

k∈Z

∑

l∈Z

sup
x∈Q1(k)

|f(x)|p · sup
y∈Q1(l)

|g(y)|p ≤

≤ ‖f‖pW (C0,lp) · ‖g‖
p
W (C0,lp)

2

One can show that the inclusion is a proper one, as it can already by
shown for C(T).

2.1.3.2 Modulation Spaces

First introduced in [46] we define a special class of functions. Note the
definition of v-moderate weight functions in Definition A.5.7.

Definition 2.1.11 Fix a non-zero window g ∈ S a v-moderate weight func-
tion m on R2d and 1 ≤ p, q ≤ ∞. Then the modulation space Mp,q

m (Rd)
consists of all tempered distributions f ∈ S ′(Rd) such that Vgf ∈ Lp,qm (Rd).
The norm on Mp,q

m (Rd) is

‖f‖Mp,q
m (Rd) = ‖Vgf‖Lp,q

m (Rd)

We will write Mp,q = Mp,q
0 and M q

m = M q,q
m . Under these circumstances it

can be shown that the spaces defined above do not depend on the special
choice of the non-zero test function g, as long as it is sufficiently well concen-
trated in the time frequency sense. Different functions define the same space
with equivalent norms. Moreover these functions spaces are Banach spaces,
invariant under time-frequency shifts [63].

2.1.3.3 Feichtinger’s Algebra: S0

A very special class of functions is the so called Feichtinger’s algebra S0(R
d) =

M1,1
0 (Rd).

Theorem 2.1.19 [42] For S0(R
d) = M1,1

0 (Rd) we have the following prop-
erties:

1. S0 = W (FL1, l1). Moreover it is continuously and densely embedded in
W0 = W (C0, l

1).
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2. It is continuously and densely embedded in L2
(
Rd
)
.

3. It is continuously embedded in any (non-trivial) time-frequency homo-
geneous Banach space.

4. A function f ∈ L2
(
Rd
)

is in S0(R
d) if and only if for a non-zero

g ∈ S0(R
d) we have Vgf ∈ L1(R2d)

5. A function g ∈ L2
(
Rd
)

is in S0(R
d) if and only if Vgg ∈ L1(R2d).

6. For g ∈ S0(R
d) also ĝ ∈ S0(R

d).

For more properties and a general overview see [42]. We already know that
Vgf is uniformly continuous for all functions in L2

(
Rd
)
, so in particular also

for S0-functions. Even more

Proposition 2.1.20 [42] A function f is in S0(R
d) if and only if for a non-

zero g ∈ S0(R
d) we have Vgf ∈ W (C0, l

1)

Therefore we can classify S0 by:

Corollary 2.1.21 A function g is in S0(R
d), if and only if Vgg ∈ W (C0, l

1).

The norm of the STFT in W (C0, l
1) can be estimated by

Lemma 2.1.22 ([42] Lemma 3.2.15) For f, g ∈ S0(R
d) we have Vgf ∈

W (C0, l
1) and there exists a constant C > 0 such that

‖Vgf‖W (C0,l1) ≤ C ‖f‖S0
‖g‖S0

It can be shown that Gabor systems with windows from this class form
Bessel sequences for all regular lattices [42]. They form a frame for parame-
ters that are small enough:

Theorem 2.1.23 ([42] 3.6.6) Let g ∈ S0(R). The Gabor system (g, a, b)
generates a frame for L2

(
Rd
)

for all sufficiently small a, b.

Let us state one corollary needed in Section 2.6:

Lemma 2.1.24 For g, γ ∈ S0(R
d) we have g ⊗ γ ∈ S0(R

2d).

Proof: With Corollary 2.1.21 g ∈ S0(R
d) if and only if Vgg ∈ W (C0, l

1).
Let λ ∈ R4d with λ = (λ1, λ2).

Vg⊗γg ⊗ γ(λ) = 〈g ⊗ γ, π(λ)g ⊗ γ〉 =

= 〈g ⊗ γ, π(λ1)g ⊗ π(λ2)γ〉 = 〈g, π(λ1)g〉 · 〈γ, π(λ2)γ〉 =

= Vgg(λ1) ⊗ Vγγ(λ2).

With Corollary 2.1.18 we get the result. 2

99



2.2 Irregular Gabor Frames

After all these well-known facts, we will come to a part of Gabor theory, which
is less explored, although in recent years there have been several publication,
e.g. [53].

2.2.1 Basic Definitions

Instead of sampling the STFT at the points (n·a,m·b) ∈ R2d for m ∈ Zd, n ∈
Zd, which means looking at the lattice aZ × bZ ⊆ R2d, we look at a set Λ of
countable but arbitrarily distributed points in the time frequency plane R2d.
Such a set will still be called lattice.

Definition 2.2.1 Let g ∈ L2(Rd) be a non zero function. Let Λ be a count-
able subset of R2d. The set of time-frequency shifts

G(g,Λ) = {π(λ)g : λ ∈ Λ}

is called an (irregular) Gabor system. If it is a frame, it is called (irreg-
ular) Gabor frame.

The set Λ is called its lattice.

For λ ∈ R2d = Rd ×Rd we will use tλ and ωλ as symbols for the first and
second coordinates, such that π(λ)g = TtλMνλ

g

One of the most important results can be found in [40], which we will
repeat in Theorem 2.2.5 after collecting the necessary tools.

Special cases of irregular sets have also been investigated. For example
products of two irregular subsets (τk)× (νl), where the time frequency plane
is still split into boxes, but they are of varying sizes, see [82]. Semi-irregular
lattices where one dimension, time or frequency, is sampled regularly are
investigated in [17]. In these cases classification result for frames have been
formulated. In [53] several sufficient conditions for irregular Gabor frames
are investigated.

2.2.2 Irregular Sampling

We will collect some basic definition for example found in [23].

Definition 2.2.2 Let I be a countable index set and Λ = (λk)k∈I a sequence
in Rd. We say that
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1. Λ is called separated if inf
j 6=k

|λj − λk| > o for all j, k ∈ I. It is called

δ-separated if |λj − λk| > δ for all j, k ∈ I.

2. Λ is called relatively separatedif it is a finite union of separated
sequences.

We use the notation Λ for such sets, as we will use the notion of separability
mostly in connection with lattices.

We can give a classification for relatively separated sequences. Following
[23] let us denote the half-open cube with length h > 0 in Rd centered at x
with Qh(x). So

Qh(x) =
d∏

i=1

[xj − h/2, xj + h/2|

where the xj are the coordinates of x. This is clearly a disjoint cover of Rd.
Let ν+(h) and ν−(h) denote the largest and smallest number of points in

Λ ∩Qh(x), i.e.

ν+(h) = sup
x∈Rd

# (Λ ∩Qh(x)) , ν−(h) = inf
x∈Rd

# (Λ ∩Qh(x))

Definition 2.2.3 With the above conventions define the upper Beurling
density D+(Λ) and the lower Beurling density D−(Λ) by

D+(Λ) = lim sup
h→∞

ν+(h)

hd
, D−(Λ) = lim sup

h→∞

ν−(h)

hd

If D+(Λ) = D−(Λ), then this number is called the uniform Beurling den-
sity D(Λ).

Lemma 2.2.1 ([23] Lemma 7.1.3) For Λ ⊆ Rd the following properties are
equivalent:

1. D+(Λ) <∞

2. Λ is relatively separated.

3. For some (and therefore every) h > 0, there is a natural number Nh(Λ)
such that

sup
n∈Zd

# (Λ ∩Qh(h · n)) < Nh(Λ)
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The last point is equivalent to

∀x : sup
n∈Zd

# (Λ ∩Qh(x)) < 2 · d ·Nh

because every Qh(x) intersects only with 2 · d boxes Qh(hn).
Let us state one result needed in the following:

Corollary 2.2.2 Let Λ be δ-separated subset of Rd. Let (aλ) ∈ l∞(Λ).

∥∥∥∥∥
∑

λ∈Λ

aλδλ

∥∥∥∥∥
W (M,l∞)

= sup
k∈Zd

sup
‖f‖C0

=1

∑

λ∈Λ∩Q1(k)

|aλ| |f(λ)|

1.2. For 1 ≤ p <∞
∥∥∥∥∥
∑

λ∈Λ

aλδλ

∥∥∥∥∥

p

W (M,lp)

=
∑

k∈Zd

sup
‖f‖C0

=1

∑

λ∈Λ∩Q1(k)

|aλ|p |f(λ)|p

Proof: 1.)

∥∥∥∥∥
∑

λ∈Λ

aλδλ

∥∥∥∥∥
W (M,l∞)

= sup
k∈Zd

sup
‖f‖C0

=1

∣∣∣∣∣∣∣

∫

Q1(k)

f(x)
∑

λ∈Λ

aλδλ(x)dx

∣∣∣∣∣∣∣
=

= sup
k∈Zd

sup
‖f‖C0

=1

∣∣∣∣∣∣

∑

λ∈Λ∩Q1(k)

aλf(λ)

∣∣∣∣∣∣

With f ∈ C0, ‖f‖∞ = 1 and because Λ is δ-separated, we can extend

λ 7→ sgn(aλ) |f(λ)|

to a function f̃ in C0 with
∥∥∥f̃
∥∥∥
∞

= 1. Therefore

sup
‖f‖C0

=1

∣∣∣∣∣∣

∑

λ∈Λ∩Q1(k)

aλf(λ)

∣∣∣∣∣∣
= sup

‖f‖C0
=1

∑

λ∈Λ∩Q1(k)

|aλ| |f(λ)|

2.) use an analogous proof as for item 1.) 2
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2.2.3 Irregular Sampling In Amalgam Spaces

The Amalgam spaces have nice sampling properties for regular sampling, see
e.g. [63]. As stated in a remark there, it is also possible to extend these
results to irregular sampling. The proof matches the proof of the regular
case in [42]:

Proposition 2.2.3 Let Λ be a relatively separated countable set, let f ∈
W (C0, l

p). Then there is a constant CΛ = N1(Λ), such that for all 1 ≤ p <∞
∑

λ∈Λ

|f(λ)|p ≤ CΛ ‖f‖pW (C0,lp)

Proof: ∑

λ∈Λ

|f(λ)|p =
∑

k∈Zd

∑

λ∈k+[− 1
2
, 1
2
[
d

|f(λ)|p

By assumption Λ is relatively separated and so there is N1(Λ) such that with
Lemma 2.2.1:

∑

λ∈k+[− 1
2
, 1
2
[d

|f(λ)|p ≤ N1(Λ) ·
∥∥∥f · χk+[− 1

2
, 1
2
[d

∥∥∥
p

∞

=⇒
∑

λ∈Λ

|f(λ)|p ≤ N1(Λ) ·
∑

k∈Zd

∥∥∥f · χk+[− 1
2
, 1
2
[d

∥∥∥
p

∞
= N1(Λ) · ‖f‖pW (C0,lp)

2

This result can be extended to W (C, l∞) = C(Rd):

Proposition 2.2.4 Let Λ be a relatively separated countable set, let f ∈
W (C, l∞). Then

‖f |Λ‖∞ ≤ ‖f‖W (C,l∞)

Proof:

‖f |Λ‖∞ = sup
λ∈Λ

|f(λ)| ≤ sup
x∈R2d

|f(x)| = ‖f‖∞ = ‖f‖W (C0,l∞)

2
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2.2.4 Irregular Bessel Sequences

In [40] Feichtinger and Gröchenig investigated atomic decomposition in the
context of locally compact groups. They proved a lot of results in this very
general case with deep representation theory tools. One of these results can
be specialized in the irregular Gabor framework to

Theorem 2.2.5 ([40] Theorem 6.1.) Let g ∈ S0 non-zero. Then there exists
an open set U ⊆ R2d such that (g,Λ) forms a frame in L2

(
Rd
)

for every
relatively separated lattice Λ for which

⋃

k∈I
(λk + U) = R2d

Without using arguments from representation theory like in [40], we can
still show that, similar to the regular case, for relatively separated lattice
S0-windows always form Bessel sequences:

Theorem 2.2.6 Let g ∈ S0 and let Λ be a relatively separated lattice ⊆ R2d.
Then the system (g,Λ) forms a Bessel sequence in L2

(
Rd
)
, i.e. there exists

a B > 0 such that for all f ∈ L2
(
Rd
)

∑

λ∈Λ

|Vgf(λ)|2 ≤ B · ‖f‖2
L2(Rd)

Proof: We will use the properties of the Gram matrix. With Theorem
1.1.37 we have to show that the Gram matrix Gg gives rise to a bounded
operator. With Schur’s Lemma, Lemma A.4.19, it is enough to show that
for this self-adjoint matrix there is a B such that for all λ′:

∑

λ∈Λ

|〈gλ, gλ′〉| ≤ B ⇐⇒
∑

λ∈Λ

|〈π(λ)g, π(λ′)g〉| ≤ B

As we are looking at the absolute value of the inner product we can ignore
phase factors and so:

⇐⇒
∑

λ∈Λ

|〈g, π(λ′ − λ)g〉| ≤ B ⇐⇒
∑

λ∈Λ

|(Vgπ(λ′)g) (−λ)| ≤ B

By assumption g ∈ S0 and as S0 is isometric time-frequency shift invariant
for all λ′ we know that π(λ′)g ∈ S0. So Vgπ(λ′)g ∈ W (C0, l

1). Therefore with
Proposition 2.2.3 we know that

∑

λ∈Λ

|(Vgπ(λ′)g) (λ)| ≤ CΛ ‖Vgπ(λ′)g‖W (C0,lp) ≤
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Lem.2.1.22

≤ CΛC ‖π(λ′)g‖S0
‖g‖S0

= C ′ ‖g‖2
S0

2

The proof does not depend on the space L2
(
Rd
)

so it can be extended to
other spaces. This theorem is a generalization of Lemma 3.3. in [53].

2.2.5 Perturbation Of Irregular Gabor Frames

We will look at a way of how to measure if two lattices are similar to each
other. We will start with an investigation on what happens if one point is
removed from a regular overcomplete Gabor frame.

2.2.5.1 From Regular To Irregular Gabor Frames

Let us look at an example on how to get an irregular frame by taking out
one element of a regular Gabor frame. Clearly for exact frames this is not a
frame anymore, but for every overcomplete regular Gabor frame we will get
an irregular frame.

Lemma 2.2.7 Let (g, a, b) form an overcomplete regular Gabor frame in
L2
(
Rd
)
. Let Λ =

{
(la, kb)

∣∣(l, k) ∈ Z2d
}
. Let λ0 ∈ Λ be any time frequency

point. Let Λ′ = Λ\{λ0}. Then (g,Λ′) forms an irregular Gabor frame.

Proof: For every f we know f =
∑
λ∈Λ

〈f, g̃λ〉 gλ. Therefore

gλ0 =
∑

λ∈Λ

〈gλ0 , g̃λ〉 gλ =⇒ gλ0 · (1 − 〈gλ0 , g̃λ0〉) =
∑

λ∈Λ′

〈gλ0 , g̃λ〉 gλ

Clearly

〈gλ0 , g̃λ0〉 = 〈π(λ0)g, π(λ0)g̃〉 = 〈g, π(λ0)
∗π(λ0)g̃〉 = 〈g, g̃〉

From the Wexler-Raz biorthogonality relation, Theorem 2.1.11, we know

(ab)−d
〈
g̃,M l

α
Tn

β
g
〉

= δl0δn0

And so as a · b < 1 for inexact Gabor frames, cf. Theorem 2.1.14

〈gλ0 , g̃λ0〉 = 1 · (ab)d < 1

Therefore g ∈ span {gλ|λ ∈ Λ′} and (g,Λ′) is complete and following Propo-
sition 1.1.2 it must be a frame. 2
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2.2.5.2 The Similarity Of Lattices

For the sake of a shorter notation let us define

Definition 2.2.4 Let Λ, Λ′ be two countable sets. If they have a common
index set K such that

|λk − λ′k| ≤ δ ∀k ∈ K,

then we say that the two sets are δ-similar and write s(Λ,Λ′) ≤ δ. If this
is not possible we set s(Λ,Λ′) = ∞
We will again use this definition mostly in connection with lattices for Gabor
analysis. This means to be able to compare two lattices they must have
a common index set. If s(Λ,Λ′) ≤ δ this means that there is a index set
fulfilling the above definition.

This kind of measuring the similarity of lattice seems only to make sense
in the irregular case, because in the regular case, if |a − a′| = δ 6= 0 the
distance between (ma, nb) and (ma′, nb′) will get arbitrarily large. But with
an infinite index set a reordering might do the trick. It is clear that this
measurement of similarity is not suitable for all questions regarding similar
lattices, but at least for jitter-like question this seems to be useful.

If we have lattices with similarity δ and δ → 0 the infinity norm of the
difference of elements of the Gabor systems (g,Λ) and (g,Λ′) tend to zero,
because we know that the time-frequency shifts are continuous:

Lemma 2.2.8 The mapping λ 7→ π(λ)g from R2d to L2
(
Rd
)

is uniformly
continuous for every g ∈ L2

(
Rd
)
. I.e. for λ→ λ′

‖π(λ)g − π(λ′)g‖L2(Rd) → 0

Proof: Let λ = (τ, ω) and λ′ = (τ ′, ω′), then

‖π(λ)g − π(λ′)g‖ = ‖MωTτg −Mω′Tτ ′g‖ ≤
≤ ‖MωTτg −Mω′Tτg‖ + ‖Mω′Tτg −Mω′Tτ ′g‖ =

= ‖(Mω −Mω′)Tτg‖ + ‖Mω′ (Tτ − Tτ ′) g‖ =

Lem.2.1.1
= ‖(Mω −Mω′)Tτg‖ + ‖(Tτ − Tτ ′) g‖ Cor.2.1.2→ 0 for λ→ λ′.

2

We have seen in Section 1.1.12 that this is not a good measure for similarity
of a frame in general. In the Gabor case we can show that this similarity is
at least well suited for the continuity of Gabor multipliers, see Section 2.6.
For that we need some results and definitions:
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Definition 2.2.5 For a function f on Rd and δ > 0, the function

x 7→ oscδ(f)(x) = sup
|y|≤δ

|Tyf(x) − f(x)|

is called the δ-oscillation of f .

Lemma 2.2.9 ([2] Lemma 6.3) Let 1 ≤ p <∞.

1. f ∈ W (C0, l
p) implies oscδ(f) ∈W (C0, l

p), and

‖oscδ(f)‖W (C0,lp) ≤ ‖f‖W (C0,lp)

2. For every f ∈W (C0, l
p)

‖oscδ(f)‖W (C0,lp) → 0 for δ → 0

Now we can formulate

Theorem 2.2.10 Let g ∈ W (C0, l
p) for 1 ≤ p < ∞, let Λ be a relatively

separated countable set in Rd. Let Λδ be countable sets such that s(Λ,Λδ) ≤ δ.
Then ∑

k∈K
|g(λk) − g(λ′k)|p → 0 for δ → 0

Proof: We know that

|g(λk) − g(λ′k)| ≤ sup
|y|≤δ

|g(λk) − g(λk + y)| = oscδ(g)(λk).

And therefore

∑

k∈K
|g(λk) − g(λ′k)|p ≤

∑

k∈K
|oscδ(g)|p (λk)

Prop.2.2.3

≤ CΛ ‖oscδ(g)‖W (C0,lp) .

With Lemma 2.2.9 (2) we know

∑

k∈K
|g(λk) − g(λ′k)|p → 0

for δ → 0. 2

If a set is similar enough to a δ-separated lattice, it is δ-separated as
stated in the next result:
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Lemma 2.2.11 Let Λ be a δ-separated lattice. Let Λ′ be a lattice with
s(Λ,Λ′) ≤ δ0 <

δ
2
. Then Λ′ is a (δ − 2δ0)-separated lattice.

Let Λ be a relatively separated lattice. Then there is a ∆ such that for all
δ0 ≤ ∆ and for any lattice Λ′ with s(Λ,Λ′) ≤ δ0 the lattice Λ′ is relatively
separated.

Proof: Let λ′i, λ
′
j ∈ Λ′. Then

∣∣λ′i − λ′j
∣∣ =

∣∣λ′i − λi + λi − λj + λj − λ′j
∣∣ =

=
∣∣(λi − λj) −

(
λi − λ′i + λ′j − λj

)∣∣ ≥
≥ |λi − λj| −

∣∣λi − λ′i + λ′j − λj
∣∣ ≥

≥ |λi − λj| −
(
|λi − λ′i| +

∣∣λ′j − λj
∣∣) ≥

≥ δ − 2δ0 > 0

For the second part apply the proof for the finitely many δn-separated
subsets of Λ. 2

For relatively separated sets a much stronger results is possible:

Proposition 2.2.12 Let Λ be a relatively separated countable set. Let r > 0.
Let Λ′ be a countable set with s(Λ,Λ′) < r. Then Λ′ is relatively separated.

Proof: Lemma 2.2.1 respectively the comment following states that a set
Λ is relatively separated if and only if for all x ∈ Rd for one (and therefore
for all) h > 0, there is Nh(Λ) such that

∀x : sup
n∈Zd

# (Λ ∩Qh(x)) < 2 · d ·Nh(Λ)

Let h = 1 and x ∈ Rd. Λ is relatively separated and so there is a Nr+1(Λ).
As s(Λ,Λ′) < r

Λ′ ∩Q1(x) ⊆ Λ ∩Qr+1(x)

and therefore

sup
x∈Rd

# (Λ′ ∩Q1(x)) ≤ sup
x∈Rd

# (Λ ∩Qr+1(x)) <

< 2 · d ·Nr+1(Λ) =: 2 · d ·N1(Λ
′)

2

As a direct consequence of the last Proposition and Theorem 2.2.6 we
get:

108



Corollary 2.2.13 Let g ∈ S0, let Λ be an irregular relatively separated lat-
tice. Let Λ′ be another irregular lattice, such that there is a r > 0 with
s(Λ,Λ′) < r. Then the Gabor system (g,Λ′) forms a Bessel sequences in
L2
(
Rd
)
.

Every regular lattice is clearly relatively separated. Therefore every ir-
regular lattice witch is similar to a regular lattice is relatively separated. In
particular every irregular lattice created by a jittering of a regular lattice
fulfills this condition, independent on how big this error is.

2.3 Gabor Multipliers

2.3.1 Preliminaries

Let us state basic definitions and properties needed for the regular and irreg-
ular case of Gabor multipliers in this introduction. For clarity we will define
the Gabor multiplier as

Definition 2.3.1 Let L2
(
Rd
)

be a Hilbert-space, let (g,Λ), (γ,Λ) be Gabor
systems in L2

(
Rd
)

that form Bessel sequences. For m ∈ l∞(Λ) define the
operator Gm,γ,g : L2

(
Rd
)
→ L2

(
Rd
)
, the Gabor multiplier for (γ,Λ) and

(g,Λ), as the operator

Gm,γ,g (h) =
∑

λ∈Λ

mλ 〈f, gλ〉 γλ

Let m be a bounded function on R2d, then we define

Gm,γ,g (h) =
∑

λ∈Λ

m(λ) 〈f, gλ〉 γλ

This is, of course, just the Bessel multiplier, see Definition 1.3.2, for a Gabor
system. Again to be able to define this operator, the two sequences have
to share their index set, here the lattice. This definition can be extended
to other spaces, where Gabor systems can be defined. We will stick to the
L2
(
Rd
)

case. Note that this definition does not make any assumption on
the regularity of the underlying discrete set Λ, as long as the Gabor systems
form Bessel sequences.

Every Gabor multiplier M can be expressed as linear combination of the
projections

Pg,γ,λ = π(λ)g ⊗ π(λ)γ.
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Following Lemma A.4.24 this means

Pg,γ,λ = π(λ) ◦ (g ⊗ γ) ◦ π(λ)∗.

In this context it seems very natural to define

Definition 2.3.2 Let T,A,B : L2
(
Rd
)
→ L2

(
Rd
)

then define

(A⊗B)T = A ◦ T ◦B

For λ ∈ R2d let
π2(λ)T = (π(λ) ⊗ π∗(λ))T

π2(λ) is a unitary representation from the phase space R2d to HS, see [43].
Therefore π∗

2(λ) = π2(−λ).
If we want to look at the Gram Matrix of this Hilbert Schmidt Projection

we can use A.4.39 and see:

Corollary 2.3.1 The entries of the Gram matrix of the projection Pλ in HS
are

G
(HS)
λ,λ′ = 〈Pg,γ,λ, Pg,γ,λ′〉 = Vg(g) (λ′ − λ) · Vγ(γ) (λ′ − λ)

For g = γ we get
Gλλ′ = |Vg(g) (λ′ − λ)|2

Proof:

〈Pλ, Pλ′〉HS = 〈gλ ⊗ γλ, gλ′ ⊗ γλ′〉 = 〈π(λ)g, π(λ′)g〉 · 〈π(λ)γ, π(λ′)γ〉 =

Cor.2.1.3
= ω(τ) · ω′(−τ) · 〈g, π(λ′ − λ)g〉 · ω(τ) · ω′(−τ) · 〈γ, π(λ′ − λ)γ〉 =

= 〈g, π(λ′ − λ)g〉 · 〈γ, π(λ′ − λ)γ〉 = Vg(g)(λ′ − λ) · Vγ(γ)(λ′ − λ)

2

2.3.2 Pseudodifferential Operator

For the discussion of Gabor multiplier it is important to look at the con-
nection of operators and time-frequency analysis, in a study of pseudo-
differential operators. This section is based on [63] and [43].

The Fourier transformation and partial differentiation are connected, so
the theory of partial differential equations can be seen as study of operators,
which can be written as
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Definition 2.3.3 Let σ ∈ L2
(
R2d
)
. Then the operator Kσ : L2

(
Rd
)
→

L2
(
Rd
)

defined by

Kσf(x) =

∫

Rd

σ(x, ω)f̂(ω)e2πix·ωdω for f ∈ L2
(
Rd
)

is called the pseudodifferential operator (PDO) with Kohn-Nirenberg
symbol σ.

The mapping σ 7→ Kσ is called the Kohn-Nirenberg correspondence.

This definition can be extended to other measurable function spaces or tem-
pered distributions on R2d. For example in [43] it is used for the so-called
Gelfand triple S0, L

2, S ′
0.

Definition 2.3.4 For two functions f, g ∈ L2
(
Rd
)

we call

uf,g(x, ω) = e−2πix·ωf̂(ω)g(x) = ω(x)
(
g ⊗ f̂

)
(x, ω)

the Rihaczek distribution.

If σ(x, ω) = m(x) the resulting operator is just the multiplication oper-
ator with m(x), if σ(x, ω) = µ(ω) the resulting operator is the convolution
operator with ĥ = µ. If f̂(ω) =

∫

Rd

f(y)e−2πiyωdy is substituted in the defini-

tion of the PDO, we receive [63]

Kσf(x) =

∫

Rd

∫

Rd

σ(x, ω)e2πi(x−y)ωdω

︸ ︷︷ ︸
=:h(x,y)

f(y)dy

Thus the PDO corresponds to integral operators, cf. Theorem 2.3.2.
For g, f ∈ S(Rd) clearly uf,g ∈ S(R2d). Let σ ∈ S ′(R2d) so the following

expression is well defined

〈σ, uf,g〉 =

∫

Rd

∫

Rd

σ(x, ω)e2πix·ωf̂(ω)g(x)dωdx =

=

∫

Rd

Kσf(x)g(x)dx = 〈Kσf, g〉

Therefore the Kohn-Nirenberg correspondence can be extended to symbols
in S ′(Rd) or S ′

0(R
d), refer to [43]. We will use the results in [43] only for the

Hilbert space setting L2
(
Rd
)
:
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Theorem 2.3.2 ([43] Theorem 7.5.1)The Kohn-Nirenberg correspondence
is an invertible operator from the integral operator kernels to the Kohn-
Nirenberg symbols.

σ (K) (x, ω) =

∫

Rd

κ(K)(x, x− y)e−2πiωydy

κ(K)(x, y) =

∫

Rd

σ(K)(x, ω)e2πiω·(x−y)dω

It is a unitary isomorphism σ : HS → L2
(
Rd
)

which implies that

〈S, T 〉HS = 〈κ(S), κ(T )〉L2(Rd) = 〈σ(S), σ(T )〉L2(Rd)

With the following lemma it becomes clear, why the mapping π2(λ) is
also called a time-frequency shift of operators, cf. e.g. [47]

Lemma 2.3.3 ([43] Lemma 7.5.3 ) The action of π2(λ) on K ∈ HS corre-
sponds to a translation of the symbol:

σ(π2(λ)K) = Tλσ (K)

So especially for the rank one operators:

σ(Pλ) = Tλσ (P0)

Let F2 be the Fourier transformation in the second variable for F (x, y).
Let Ta be the coordinate transformation (TaF ) (x, y) = F (x, y−x). Then we
can write

κ(K)(x, y) = TaF2σ(K)

Using that, we want to find yet another way to describe a Hilbert-Schmidt
operator. Clearly

F2σ = F−1
1 F1F2σ = F−1

1 σ̂

and therefore

κ(K)(x, y) = F2σ(x, y − x) = F−1
1 σ̂(x, y − x) =

∫

Rd

σ̂(η, y − x)e2πiη·xdη

Kσf(x) =

∫

Rd

∫

Rd

σ̂(η, y − x)e2πiη·xf(y)dηdy =
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=

∫

Rd

∫

Rd

σ̂(η, u)e2πiη·(x)f(x+ u)dηdu =

=

∫

Rd

∫

Rd

σ̂(η, u) (MηT−uf) (x)dηdu

And so the PDO Kσ can also be represented as superposition of time-
frequency shifts

Kσ =

∫ ∫

R2d

σ̂(η,−u)MηTududη

where the operator-valued integral is understood ”in a strong way”, i.e.

(∫
O(x)dx

)
(f)(y) =

∫
(O(x)f) (y)dx.

With this motivation we define

Definition 2.3.5 The spreading function of a linear operator K ∈ HS
with kernel κ(K) is defined as

η(K)(t, ν) =

∫

Rd

κ(K)(x, x− t)e−2πiη·xdx

Theorem 2.3.4 ([43] Theorem 7.6.3.) The assignment of the spreading
function η(K) to a linear operator K ∈ HS is an invertible mapping.

κ(K)(x, y) =

∫

Rd

η(K)(x− y, ν)e2πiν·xdν

It is a unitary isomorphism σ : HS → L2
(
Rd
)

which implies that

〈S, T 〉HS = 〈η(S), η(T )〉L2(Rd)

We will not use the spreading function in the following sections exten-
sively. We have nevertheless repeated the basic definition and properties of
the spreading function, because it gives a different way to view these opera-
tors: They are represented as a superposition of time-frequency shifts. This
is easier to interpret in some applications. This representation is connected
to the Janssen representation and matrix, refer to Section 3.1.2.4. For more
on the spreading functions see e.g. [55].
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2.4 Regular Gabor Multipliers

As regular lattices are obviously relatively separated, according to Theorem
2.2.6 every S0-atom forms a Gabor Bessel sequence. Therefore the Gabor
multiplier is a well-defined operator on L2(Rd) for all bounded symbols.

Regular Gabor multipliers have been investigated to some extent. In [47]
the equivalent statements to Theorem 1.3.13 and Lemma 1.3.29, among oth-
ers, have been proved for regular Gabor multipliers. The investigation of how
the multiplier depends on the sequences and the symbols motivated Section
1.3.6, which we are going to refine in Section 2.6. In [34] Gabor multipliers
have been investigated with special focus on application in music. Some re-
sults for irregular Gabor multipliers in Section 2.5 are just generalizations
from results there.

For regular Gabor multipliers with g = γ the HS Gram matrix of the
sequence Pλ is

(GHS)k,l = |Vgγ (λk − λl)|2

and is therefore a circulant matrix. So an equivalent condition for be-
ing invertible can be found [34] by using this condition with the Fourier-
transformation on Λ. Compare this to Section 3.4.1.3, which deals with
circulant matrices in the finite-dimensional case. We refer also to [12], where
the question of well-balanced Gabor systems are further investigated. There
it is shown that for regular Gabor frames the Bessel sequences Pλ in HS
are either Riesz bases or have no further structure, i.e. they can not form a
frame sequences without forming a Riesz sequence. For a related property
refer to Section 2.5.4.2. In all these references it can be seen that the big
’advantage’ of the regular case is the group structure of the lattice. So e.g. it
can be shown [51] for windows in S0 that the dual atom continuously depends
on the lattice parameters. The lack of this useful structure gave rise to the
investigation of multipliers for the general frame case in Section 1.3.

2.4.1 Spline-Type Spaces

Following [23] we will call a sequence of Tλk
g for a fixed g ∈ H a sequence

of translates. As special case when these elements form a Riesz sequence,
we call the closed span of these elements a Spline-type spaces. With the
Kohn-Nirenberg symbol we get a connection between the sequences (Pλ) and
Spline-type space following Lemma 2.3.3 . This connection was investigated
in [45] and [49]. One of the main results will be extended to the irregular
case in Theorem 2.5.6.
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2.5 Irregular Gabor Multiplier

One of the main reasons to investigate frame multipliers in the general case
was to specialize the results to the case of irregular Gabor systems. As a lot
of tools is lost by dropping the group structure, for this work it was decided
to investigate an even more general case. As the Gabor multipliers are just
Bessel multipliers in the sense of Section 1.3 all the results there are valid in
this context.

2.5.1 Basic Properties

Let us just repeat the main theorem as an example and specialize it to
relatively separated lattices, windows in S0 and continuous symbols.

Theorem 2.5.1 Let g, γ ∈ S0 and let Λ be a relatively separated lattice
⊆ R2d. Let

G = Gm,g,γ =
∑

λ

m(λ)gλ ⊗ γλ

be the Gabor multiplier with symbol m ∈ C(R2d), then

1. Let m ∈ W (C, l∞), then G is a well defined bounded operator with
‖G‖Op ≤ C · ‖m‖∞.

2. G∗
m,fk,gk

= G∗
m,gk,fk

. Therefore if m is real-valued and g = γ, G is
self-adjoint.

3. If m ∈ C0(R
2d), then G is compact.

4. If m ∈ W (C0, l
1), then G is a trace class operator with ‖G‖trace ≤

C ‖m‖W (C0,l1), and tr(G) = 〈g, γ〉 ·∑
λ

mλ.

5. If m ∈W (C0, l
2), then G is a Hilbert Schmidt operator with ‖G‖HS ≤

C ‖m‖W (C0,l2).

Proof: From Section 2.2.3 we know that for m ∈ W (C0, l
p) we have

‖m(λ)‖p ≤ C · ‖m‖W (C0,lp). The rest is a direct consequence of Theorem
1.3.13.

For the trace formulas we know from Theorem 1.3.13

tr(G) =
∑

λ

mλ 〈γλ, gλ〉 =
∑

λ

mλ 〈γ, π∗(λ)π(λ)g〉 = 〈γ, g〉
∑

λ

mλ.

2

In the rest of this section we show many results, that are just generaliza-
tions to the irregular case of results in [34], [47] and [45].
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2.5.2 The Kohn-Nirenberg Symbol

Proposition 2.5.2 Let (g, γ) be an irregular Gabor system that forms a
Bessel sequence.. Let Pλ = π(λ)g ⊗ π(λ)γ. Then

1. σ(Gm,γ,g) =
∑
λ

mλ · Tλσ(P0) =: m ∗Λ σ(P0)

2. σ(P0) = uγ,g

Proof:

σ

(
∑

λ

mλPλ

)
=
∑

λ

mλσ (Pλ) =

=
∑

λ

mλσ (π2(λ)P0)
Lem.2.3.3

=
∑

λ

mλTλσ (P0)

From Lemma 1.3.15 we know that

κ (Gm,g,γ) =
∑

λ

mλgλ ⊗ γλ

and so especially
κ (g ⊗ γ) = g ⊗ γ

Therefore

σ (P0) (x, ω) =

∫

Rd

g(x) · γ(x− y)e−2πiωydy =

= g(x) ·
∫

Rd

γ(x− y)e−2πiωydy = g(x) ·
∫

Rd

γ(u)e−2πiω(x−u)du =

= g(x)e−2πiωx ·
∫

Rd

γ(u)e2πiωudu = e−2πiωx · g(x) ·
∫

Rd

γ(u)e−2πiωudu =

= e−2πiωx · g(x) · γ̂(ω) = uγ,g(x, ω)

2
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2.5.3 Well-balanced Gabor systems

Lemma 2.5.3 Let (g, γ,Λ) form a well-balanced pair of Gabor Bessel se-
quence. Then there is an operator Q0 ∈ span {Pλ} such that Qλ = π(λ)Q0

forms a biorthogonal sequence for Pλ = gλ ⊗ gλ.

Proof: We know that Pλ is a Riesz sequence, so there is a biorthogonal
sequence (Q′

λ) ⊆ span {Pλ}. Set Q0 = Q′
0. Then

〈Pλ, π(λ′)Q0〉HS = 〈π(λ)P0, π(λ′)Q0〉HS =

= 〈π(λ− λ′)P0, Qo〉HS = δλ,λ′

2

Different to the regular case we can not conclude that the Qλ = π2(λ)Q0

are in span {Pλ}, because (from the Kohn-Nirenberg point of view) in general
irregular frames of translates are not translation invariant.

2.5.4 Hilbert Schmidt Operators

In this section we will investigate the case, in which the Gabor multipliers
are in HS = HS(L2

(
Rd
)
).

2.5.4.1 Frames In HS
As η, σ and κ are unitary isomorphisms, they transfer the properties of one
space exactly into the others. For clarity we will state some results explicitly.

Theorem 2.5.4 Let Tk ∈ HS for k ∈ K. Then

1. S ∈ span {Tk} ⇔ σ(S) ∈ span {σ(Tk)}

2. S ∈ span {Tk} ⇔ η(S) ∈ span {η(Tk)}

3. S ∈ span {Tk} ⇔ κ(S) ∈ span {κ(Tk)}

Proof: Let T ∈ span {Tk}, then for all ǫ > 0 there exists a finite set I and
coefficients cki

such that

∥∥∥∥∥T −
∑

i∈I
cki
Tki

∥∥∥∥∥
HS

< ǫ
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With Theorem 2.3.2 this is equal to
∥∥∥∥∥σ(T ) −

∑

i∈I
cki
σTki

∥∥∥∥∥
L2(Rd)

< ǫ

So one direction of point 1 is proved, for the other direction the proof has
just to be swapped.

For η and κ, literally only the symbols have to be exchanged in the above
proof. 2

Theorem 2.5.5 Let Tk ∈ HS for k ∈ K

1. If and only if the sequence (Tk) forms a Bessel sequence, frame se-
quence, frame, Riesz sequence, Riesz basis, orthogonal sequences or
orthonormal basis within the Hilbert space HS then (σ(Tk)) does in the
phase space L2

(
R2d
)
, too.

2. If and only if the sequence (Tk) forms a Bessel sequence, frame se-
quence, frame, Riesz sequence, Riesz basis, orthogonal sequences or
orthonormal basis in HS then (η(Tk)) does in L2

(
R2d
)
, too.

3. If and only if the sequence (Tk) forms a Bessel sequence, frame se-
quence, frame, Riesz sequence, Riesz basis, orthogonal sequences or
orthonormal basis in HS then (κ(Tk)) does in L2

(
R2d
)
, too.

Proof:
A · ‖S‖HS ≤

∑

k

|〈S, Tk〉HS| ≤ B · ‖S‖HS ⇐⇒

A · ‖σ(S)‖HS ≤
∑

k

|〈σ(S), σ(Tk)〉HS| ≤ B · ‖σ(S)‖HS

So the Bessel sequence and frame property is preserved.
For Riesz sequences and orthogonal sequences we just have to note, that

the sequence (Tk) has the same Gram matrix as σ(Tk) because of Theorem
2.3.2.

With Theorem 2.5.4 we obtain the missing results for frame sequences,
Riesz bases and ONBs.

For η and κ, literally only the symbols have to be exchanged in the above
proof. 2

The last result can be applied to Pλ = γλ ⊗ gλ. Using Proposition 2.5.2
we can show the corresponding result of [45] Theorem 5.20 for the irregular
case. Remember the definition of well-balanced systems in Definition 1.3.4.
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Proposition 2.5.6 Let g, γ ∈ L2
(
Rd
)

form a well-balanced pair of Gabor
Bessel sequences. Let T ∈ HS. Then T is a Gabor multiplier for these Gabor

systems if and only if σ(T ) belongs to span {Tλuγ,g} =

{∑
λ

cλuγ,g |(cλ) ∈ l2(Λ)

}
.

Proof: With Proposition 2.5.2 one direction is clear.
On the other hand let σ(T ) ∈ span {Tλuγ,g}. Because the Gabor systems

are well-balanced, we know that span {Tλuγ,g} =

{∑
λ

cλTλuγ,g

}
. Therefore

there exists a c ∈ l2(Λ) such that

σ(T ) =
∑

λ

cλTλuγ,g =
∑

λ

cλσ(Pλ)

⇐⇒ T =
∑

λ

cλPλ

2

For the proof it is enough that the projections Pλ form a frame sequence.

2.5.4.2 The Sequence Pλ In HS
In [23] the following result has been proved for frames of irregular translates:

Theorem 2.5.7 ([23] Proposition 7.4.2.) Assume that (λk)k∈K is a sequence
for which λk 6= λi for k 6= i. If g ∈ L2

(
Rd
)
, g 6= 0 then the functions (Tλk

g)
are linearly independent.

Applying this result to Gabor multipliers with the Kohn-Nirenberg cor-
respondence we immediately get:

Theorem 2.5.8 Assume that (λk)k∈K is a sequence for which λk 6= λi for
k 6= i. Let g, γ ∈ L2

(
Rd
)
, g, γ 6= 0 then the sequence (Pg,γ,λ) in HS(L2

(
Rd
)
)

is linearly independent.

Proof: If g, γ ∈ L2
(
Rd
)

then as a special case of Theorem 1.3.13 P0 ∈
HS(L2

(
Rd
)
) and therefore σ(P0) ∈ L2

(
R2d
)
.

Suppose there is a finite index set I such that

∑
cλi
Pλi

= 0 ⇒

0 = σ
(∑

cλi
Pλi

)
=
∑

cλi
σ (Pλi

) =
∑

cλi
Tλi

σ (P0)

Therefore the cλi
= 0. 2
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In the general case this does not necessarily mean that the sequence forms
a Riesz sequence, as Riesz sequences have to be minimal, cf. Theorem 1.1.32.
For finite-dimensional case Theorem 2.5.7 can not be easily adapted. This
case certainly has to be investigated further.

2.6 Changing The Ingredients For Irregular

Gabor Multipliers

For the irregular case we can show a similar property as stated in [47] The-
orem 5.6.2 for the regular case:

Theorem 2.6.1 Let g, γ ∈ W (C, l∞), let Λ be a relatively separated irregu-
lar lattice, such that (g,Λ) (γ,Λ) form a pair of Bessel sequences for L2

(
Rd
)
.

For m ∈ W (C0, l
1) let G = Gm,g,γ . Then the trace-class operator G contin-

uously depends on m, gk, fk and Λ, in the following sense:
Let (γ

(l)
k ), (g

(l)
k ) be Bessel sequences indexed by l ∈ N with g(l) → g,

γ(l) → γ in W (C0, l
∞). Let Λ(δ) be lattices such that s

(
Λ,Λ(δ)

)
≤ δ. Let

m(l) → m in W (C, l1). Then

Gm(l),g,γ,Λ(δ) → Gm,g,γ,Λ in the trace class

for δ → 0, N → ∞.

Proof: As s
(
Λ(l),Λ

)
6= ∞, there is a common index set I for all these

lattices. Let in the following be λ′i ∈ Λ(δ) and λi ∈ Λ.
With Lemma 2.1.1 we know that

∥∥π(λ′i)g
(l) − π(λi)g

∥∥
L2(Rd) ≤

≤
∥∥π(λ′i)g

(l) − π(λ′i)g
∥∥
L2(Rd) + ‖π(λ′i)g − π(λi)g‖L2(Rd) =

=
∥∥g(l) − g

∥∥
L2(Rd) + ‖π(λ′i)g − π(λi)g‖L2(Rd)

And so, because of Corollary 2.2.8, for every ǫ2 > 0 there is N1 and a δ2 such
that for all δ < δ2 and l > N1

∥∥π(λ′i)g
(l) − π(λi)g

∥∥
L2(Rd) < ǫ2

As g(l) → g, there is a N2 such that there is a common bound B, such that

∥∥π(λ′i)g
(l)
∥∥
L2(Rd) < B
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Clearly this properties are also valid for γ(l).
With Theorem 1.3.18 and the remark following it, we now have to show

that m(l)(λi) → m(λi) in l1 to prove the result.

∑

i∈I

∣∣m(l)(λ′i) −m(λi)
∣∣ ≤

∑

i∈I

∣∣m(l)(λ′i) −m(λ′i)
∣∣+
∑

i∈I
|m(λ′i) −m(λi)| ≤

Prop.2.2.3

≤ N1(Λ
(δ)) ·

∥∥m(l) −m
∥∥
W (C0,l1)

+
∑

i∈I
|m(λ′i) −m(λi)| ≤

There is a δ3 such that for δ < δ3 there exists a C with N1(Λ
(δ)) < C. With

Theorem 2.2.10 for every ǫ5 > 0 there is a δ4 and N2 such that

∑

i∈I

∣∣m(l)(λ′i) −m(λi)
∣∣ ≤ ǫ5

So we have shown that for every ǫ > 0 there is a N = max{N1, N2} and
δ0 = min{δ1, . . . , δ4} such that for all l > N and δ < δ0

∥∥Gm(l),g,γ,Λ(δ) − Gm,g,γ,Λ

∥∥
trace

< ǫ

2

The equivalent statement to Theorem 3.3. in [49] can be shown by adapt-
ing the proof there to the irregular case:

Theorem 2.6.2 Let g, γ ∈ S0(R
d), let Λ be a δ-separated irregular lattice.

For m ∈ W (C0, l
2) let G = Gm,g,γ . Then the Hilbert Schmidt operator G

continuously depends on m, gk, fk and Λ, in the following sense: Let (γ
(l)
k ),

(g
(l)
k ) be sequences indexed by l ∈ N with g(l) → g, γ(l) → γ in S0(R

d). Let
Λ(δ) be lattices such that s

(
Λ,Λ(δ)

)
≤ δ. Let m(l) → m in W (C0, l

2). Then

Gm(l),g,γ,Λ(δ) → Gm,g,γ,Λ in HS

for δ → 0, N → ∞.

Proof: As s
(
Λ(l),Λ

)
6= ∞, there is a common index set I for all these

lattices. With Corollary 2.2.13 we know that there is a δ1 such that (g(l),Λ(δ))
and (γ(l),Λ(δ)) form a Bessel sequence. Let λ′i ∈ Λ(δ) and λi ∈ Λ.

As g(l) → g, there is a N1 such that for all l > N1 there is a common
bound B1 ∥∥π(λ′i)g

(l)
∥∥
S0
< B1
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Let µδ =
∑
i∈I
δλ′i . There is a δ2 such that µδ is uniformly bounded in

W (M, l∞) for δ < δ2 as

‖µδ‖W (M,l∞)

Cor.2.2.2
= sup

k∈Zd

sup
‖f‖

∞
=1

∑

λ′i∈Q1(k)

|f(λ′i)| ≤

≤ sup
k∈Zd

sup
‖f‖

∞
=1

N1(Λ
(δ)) · ‖f‖∞ = N1(Λ

(δ))

where the notations Q1(k) and N1(Λ) are those used in Section 2.2.2. There
is a δ3 such that there is a B2 with N1(Λ

(δ)) < B2. As Cc ⊆ C0 dense, with
Corollary 2.1.16 W (Cc, l

2) ⊆ W (C0, l
2) and so there is for every ǫ1 > 0 there

is a φ ∈ W (Cc, l
2) with values in [0, 1] such that

‖m · φ−m‖W (C0,l2) < ǫ1

From Corollary 2.1.16 we have W (C0, l
2) ·W (M, l∞) ⊆ W (M, l2) and so

‖m · µδ −m · φ · µδ‖W (M,l2) ≤ B2 ‖µδ‖W (M,l∞) · ‖m−m · φ‖W (C0,l2) ≤ B2 · ǫ1

Therefore ∥∥∥∥∥
∑

i∈I
(1 − φ(λi)) ·m(λi) · δλi

∥∥∥∥∥
W (M,l2)

≤ B2 · ǫ1

Let δ4 be fixed, e.g. δ4 = 1/2. Then there is a finite index set I1 ⊆ I such
that for all δ < δ4 the set {λi|λi ∈ Λ(δ), i 6∈ I1}∩ supp(φ) is empty. Following
Corollary 2.1.17 we get for λ′ ∈ Λ(δ)

∥∥∥∥∥
∑

i6∈I1

(1 − φ(λ′i)) ·m(λ′i) · δλ′i

∥∥∥∥∥
W (M,l2)

≤
∥∥∥∥∥
∑

i∈I
(1 − φ(λ′i)) ·m(λ′i) · δλ′i

∥∥∥∥∥
W (M,l2)

≤ B2·ǫ1

As all λ which are not in Λ
(δ)
2 are not in supp(φ) we have

∥∥∥∥∥
∑

i6∈I1

(1 − φ(λ′i)) ·m(λ′i) · δλ′i

∥∥∥∥∥
W (M,l2)

=

∥∥∥∥∥
∑

i6∈I1

m(λ′i) · δλ′i

∥∥∥∥∥
W (M,l2)

≤ B2 · ǫ1

Let

Gl,δ =
∑

λ∈Λ(δ)

m(l)(λ)g
(l)
λ ⊗ γ

(l)
λ and G0 =

∑

λ∈Λ

m(λ)gλ ⊗ γ
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With Proposition 2.2.3 and Lemma 2.2.11 there is a δ5 such that for all
δ < δ5 and λ′ ∈ Λ(δ) we obtain m(l)(λ′) ∈ l2 and so these operators are in
HS.

‖Gl,δ −G0‖HS = ‖σ(Gl,δ) − σ(G0)‖L2(Rd)

From Proposition 2.5.2 we know that

σ(Gl,δ) =
∑

i∈I
m(l)(λ′i) · Tλ′iug(l),γ(l)

With γ(l) ∈ S0(R
d) due to Theorem 2.1.19 also ˆγ(l) ∈ S0 as With g(l), γ(l) ∈

S0(R
d) we have ug(l),γ(l)(t, ω) = ω(t) · g(l)(t) · ˆγ(l)(ω) ∈ S0(R

2d), cf. Corollary
2.1.24.

From Corollary 2.1.16 we also know thatW (M, l∞)∗W (C0, l
1) ⊆ W (C0, l

2).

∥∥∥∥∥
∑

i6∈I1

m(λ′i)Tλ′iug(l),γ(l)

∥∥∥∥∥
W (C0,l2)

=

∥∥∥∥∥

(
∑

i6∈I1

m(λ′i)δλ′i

)
∗ ug(l),γ(l)

∥∥∥∥∥
W (C0,l2)

≤

≤ B3 ·
∥∥∥∥∥
∑

i6∈I1

m(λ′i)δλ′i

∥∥∥∥∥
W (M,l∞)

·
∥∥ug(l),γ(l)

∥∥
W (C0,l1)

≤

≤ B3 · B2ǫ1 · B1

2

for all δ < min{δ1, . . . , δ4} and l > N1.
So we know for λ′i ∈ Λ(δ)

‖σ(Gl,δ) − σ(G0)‖L2(Rd) =

∥∥∥∥∥
∑

i∈I

(
m(l)(λ′i)δλ′i ∗ ug(l),γ(l) −m(λi)δλi

∗ ug,γ
)
∥∥∥∥∥
L2(Rd)

≤

≤
∥∥∥∥∥
∑

i6∈I1

m(l)(λ′i)δλ′i ∗ ug(l),γ(l)

∥∥∥∥∥
L2(Rd)

+

∥∥∥∥∥
∑

i6∈I1

m(λi)δλi
∗ ug,γ

∥∥∥∥∥
L2(Rd)

+

+

∥∥∥∥∥
∑

i∈I1

(
m(l)(λ′i)δλ′i ∗ ug(l),γ(l) −m(λi)δλi

∗ ug,γ
)
∥∥∥∥∥
L2(Rd)

≤

≤ 2 · B3 · B2ǫ1 · B1

2 +

∥∥∥∥∥
∑

i∈I1

m(l)(λ′i)δλ′i ∗ ug(l),γ(l) −m(λi)δλi
∗ ug,γ

∥∥∥∥∥
L2(Rd)

123



Finally let P (l) = g(l) ⊗ γ(l) and P 0 = g ⊗ γ. Then
∥∥∥∥∥
∑

i∈I1

m(l)(λ′i)δλ′i ∗ ug(l),γ(l) −m(λi)δλi
∗ ug,γ

∥∥∥∥∥
L2(Rd)

=

=

∥∥∥∥∥
∑

i∈I1

m(l)(λ′i)π2(λ
′
i)P

(l) −mλiπ2(λi)P
0

∥∥∥∥∥
HS

≤

∥∥∥∥∥
∑

i∈I1

m(l)(λ′i)π2(λ
′
i)P

(l) −m(λ′i)π2(λ
′
i)P

(l)

∥∥∥∥∥
HS

+ (2.1)

∥∥∥∥∥
∑

i∈I1

m(λ′i)π2(λ
′
i)P

(l) −m(λi)π2(λ
′
i)P

(l)

∥∥∥∥∥
HS

+ (2.2)

∥∥∥∥∥
∑

i∈I1

m(λi)π2(λ
′
i)P

(l) −m(λi)π2(λi)P
(l)

∥∥∥∥∥
HS

+ (2.3)

∥∥∥∥∥
∑

i∈I1

m(λi)π2(λi)P
(l) −m(λi)π2(λi)P

0

∥∥∥∥∥
HS

(2.4)

(2.1)
Th.1.3.13

≤
∥∥m(l)(λ′i) −m(λ′i)

∥∥
2
B1

2
Prop.2.2.3

≤ N1(Λ
(δ))·

∥∥m(l) −m
∥∥
W (C0,l2)

B1

2

For all ǫ2 > 0 there is a N2 such that for all δ < min{δ1, . . . , δ5} and l >
max{N1, N2}

(2.1) ≤ ǫ2B2 · B1

2

(2.2)
Th.1.3.13

≤ ‖m(λ′i) −m(λ′i)‖2 B1

2

And so with Theorem 2.2.10 there is for all ǫ3 > 0 a δ6 such that for all
δ < min{δ1, . . . , δ6} and l > N1

(2.2) ≤ ǫ3 · B1

2

(2.3) ≤ #I1 ‖m(λi)‖∞
∥∥π2(λ

′
i)P

(l) − π2(λi)P
0
∥∥
HS ≤

≤ #I1 ‖m‖W (C0,l∞)

∥∥π2(λ
′
i − λi)P

(l)
∥∥
HS

So for every ǫ4 > 0 there is a δ7 such that for all δ < min{δ1, . . . , δ5, δ7} and
l > N1

(2.3) ≤ #I1 ‖m‖W (C0,l∞) · ǫ4
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Equally

(2.4) ≤ #I1 ‖m‖W (C0,l∞)

∥∥π2(λi)P
(l) − π2(λi)P

0
∥∥
HS =

= #I1 ‖m‖W (C0,l∞)

∥∥P (l) − P 0
∥∥
HS

∥∥P (l) − P 0
∥∥
HS =

∥∥g(l) ⊗ γ(l) − g ⊗ γ
∥∥
HS ≤

≤
∥∥(g(l) − g

)
⊗ γ
∥∥
HS +

∥∥g ⊗
(
γ(l) − γ

)∥∥
HS

Therefore for every ǫ5 > 0 there is a N3 such that for all δ < min{δ1, . . . , δ5}
and l > max{N1, N3}

∥∥P (l) − P 0
∥∥
HS ≤ 2 · ǫ5 · B1

and so
(2.4) ≤ #I1 ‖m‖W (C0,l∞) 2 · ǫ5 · B1

Overall for all ǫ > 0 there is aN = max{N1, ..., N3} and δ0 = min{δ1, ..., δ7}
such that for all l > N and δ < δ0 we have

‖Gl,δ −G0‖HS < ǫ

2

2.7 The Gabor Multiplier in CL

2.7.1 The Kohn-Nirenberg Symbol And Spreading Func-
tion In CL

For a Kohn-Nirenberg algorithm we can use the formula

σ (K) (x, ω) =

∫

Rd

κ(K)(x, x− y)e−2πiωydy

and translate it to the discrete setting by noting that the matrix represen-
tation is the kernel of an operator and the integral reduces to a sum. So for
the L× L matrix M we receive

σm,n =
L−1∑

l=0

Mm,m−le
−2πinl

L

125



The corresponding algorithm can be found in Section B.2.2. In the test file
in Section B.2.2.1 the algorithm was validated by checking the identity

σ(P0) = uγ,g

from Proposition 2.5.2.
For the spreading function we show in Section 3.2.1 that the time-frequency

shifts are an ONB in HS(Cn). So every matrix can be represented as
H =

∑
ηλπλ with ηλ = 〈H,MkTl〉HS. Following results in the next chapter,

cf. Section 3.2,

〈T,MkTl〉HS =
L−1∑

i,j=0

Ti,j · (MkTl)i,j =
L−1∑

i,j=0

Ti,j · ωi·kL δi,j+l =

=
L−1∑

i=0

Ti,i−l · ωi·kL

This was implemented for example by W. Kozek in spread.m [54].

2.7.2 The Irregular Gabor System

Section B.2.1 includes a MATLAB-algorithm, that calculates the synthesis
matrix for an irregular Gabor system. This algorithm uses row vectors and
matrix-multiplication from the right. The single elements of the Gabor sys-
tem are the rows of this matrix. The elements of the Gabor system are
centered at points in the L×L time-frequency given by a n× n matrix xpo.
Every point in this matrix, which is not zero, is used for one element of the
Gabor system.

A test file is included as well.

2.7.3 Approximation of Hilbert Schmidt operators by
irregular Gabor Multipliers

In [50] an algorithm was presented that approximated a matrix by a regular
Gabor matrix. The regularity of the Gabor system was used extensively to
implement a numerically efficient algorithm. This is of course no option for
irregular Gabor multipliers. But different to the case for general frames,
Section 1.3.9.3, the HS Gram matrix can be calculated using the efficient
FFT algorithm by using Corollary 2.3.1. For an algorithm refer to Section
B.3.1. A test file is included.

The algorithm for an approximation of any matrix by irregular Gabor
multipliers can be found in Section B.3.2.
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2.7.3.1 Comparison To The Regular Version

The algorithm developed in this work for irregular Gabor multipliers is com-
pared with the one from [50], which uses regular lattices and the same window
for analysis and synthesis. Although slower the irregular approximation gives
the same result, cf. Figure 2.4, when used with a regular lattice. We will
give one example for a random matrix T , which was approximated.

0 5 10 15 20 25 30 35

05101520253035
−0.5

0

0.5

original

0 5 10 15 20 25 30 35

05101520253035
−0.5

0

0.5

approximation (regular by MH)

0 5 10 15 20 25 30 35

05101520253035
−0.5

0

0.5

approximation (irregular)

Figure 2.4: (Top:) The original matrix: a random matrix. (Middle:) The
approximation by the regular version of [50]. (Bottom:) Approximation by
the irregular version u.

For this experiment the parameters have been chosen for good graphical
properties. The dimension of the signal space is n = 32, the lattice parame-
ters are a = 4, b = 4 and a Gaussian window has been chosen for analysis
and synthesis. For this example the difference of the two approximations in
the Operator-norm is 8.83744 · 10−15.

In Figure 2.4 we see that components ”away” from the diagonal can not
be approximated well by Gabor multipliers. This fact is further illustrated
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in Figure 2.5, where a translation matrix is approximated using the same
parameters.

0 5 10 15 20 25 30 35

05101520253035
0

0.5

1

original

0 5 10 15 20 25 30 35

05101520253035
0

0.2

0.4

approximation (regular by MH)

0 5 10 15 20 25 30 35

05101520253035
0

0.2

0.4

approximation (irregular)

Figure 2.5: (Top:) The original matrix: a translation matrix. (Middle:) The
approximation by the regular algorithm (Bottom:) The approximation by the
irregular algorithm.

2.7.3.2 Approximation Of The Identity

As an example we will look at the approximation of the identity with n = 32
as in Section 1.3.9.3. The lattice points are chosen randomly for a redundancy
of 2. For the synthesis atom again a Gaussian is chosen, for the analysis atom
a normalized zero-padded hamming window, see Figure 2.6 and 2.7.
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−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5
Analysis Atom:

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5
Synthesis Atom:

Figure 2.6: (Left:) The analysis window (Gaussian). (Right:) The synthesis
window (Hamming).

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

original

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

approximation

0

5

10

15

20

25

30
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approximation

nz
 =

 7
5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

original

nz
 =

 7
5

Figure 2.7: (Top Left:) The original matrix, the identity (3D plot). (Top
Right:) The approximation by Gabor multipliers (3D plot). (Bottom Left:)
The original matrix (With Lattice Points) . (Bottom Right:) The approxi-
mation by Gabor multipliers. (With Lattice Points)
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Chapter 3

Discrete Finite Gabor Analysis

The goal in the next chapter, Chapter 4, is to find an algorithm for the
modification of an audio signal. As we have already seen the Short-time
Fourier transformation (STFT) is a valuable tool for displaying the energy
distribution of a signal f over the time-frequency plane. For a number of
applications (for example in audio processing like time stretching without
changing the frequency content [32], more complex modifications like psy-
choacoustical masking see Chapter 4, or other applications see [31, 72, 132]),
the time domain signal needs to be reconstructed using the time-frequency
domain coefficients. The dual problem of atomic decomposition is also needed
in applications. In it a given signal is built as a series using a time-frequency
shifted window as building blocks (see e.g. [5]). Application and algorithms
always work with finite dimensional data. So we work with finite discrete
signals and have also to ask questions of the numerical efficiency. Therefore
some properties of the general theory are ’translated’ to this special case.

In this chapter we will first look at a summary of known results for the
finite, discrete Gabor theory and some ’translation’ from general frame the-
ory, from Section 1.2. We will collect well-known results in Section 3.1 to
find out that the Gabor frame matrix has a very special structure. It is a
block-matrix. Because the Gabor frame matrix has this special structure we
will investigate matrices with a special block structure and investigate the
Fourier transformation defined for matrices in Section 3.2. We will refer to
[122] a lot in this chapter, so we will look at some details at the work ’Nu-
merical Algorithms For Discrete Gabor Expansions’ by Thomas Strohmer in
[44]. We will correct some minor errors there. Finally in Section 3.4 we will
look at a new method for inverting the Gabor frame method with Double
Preconditioning already published in [9]. The main question in this section
is how can we find an effective analysis-synthesis system. To find an an-
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swer we will investigate a method for finding an approximate dual by using
preconditioning matrices.

A big part of this chapter, most notable Section 3.2.6, 3.2.6.1 and 3.4 has
been published as [9].

3.1 Preliminaries

3.1.1 Computational Linear Algebra : Iterative Algo-
rithms

We want to solve the equation

Ax = b. (3.1)

Direct algorithms like e.g. the Gauss elimination are known to be numer-
ically very expensive and also instable. Often other methods, like iterative
algorithms, are used. We define

Definition 3.1.1 An iteration for Cn is a function Φ : Cn×Cn 7→ Cn with
xm+1 = Φ(xm, b).

It is called linear if Φ(x, b) = Mx+Nb for two matrices M,N ∈ Cn×n.
It is called consistent with the matrix A, if for all b ∈ Cn A−1b is a

fixed point of x 7→ Φ(x, b).
It is called convergent, if for all b ∈ Cn the iteration converges for all

starting vectors x0 ∈ Cn to the same limit x̂ = lim
m→∞

xm.

Proposition 3.1.1 ([87] Chapter 4)

1. A linear iteration is consistent with the matrix A if and only if

M = I −NA.

2. A linear iteration Φ is convergent, if and only if the spectral radius of
the iteration matrix M is smaller than one, ρ(M) < 1.

3. Let Φ be a linear iteration, that is convergent and consistent with A.
Then x = lim

i→∞
xm for

xm = Φ (xm−1, b) for m = 1, 2, . . .

and for every starting value x0 the equation Ax = b holds.
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3.1.1.1 Splitting Method

Every matrix A can be written as A = B + (A−B) for any matrix B. This
leads to the system

Bx = (B − A) x+ b

which is equivalent to Equation 3.1.
If B is invertible, then the following system is equivalent:

x = B−1 (B − A) x+B−1b

Definition 3.1.2 The linear iteration

xm+1 = Φ (xm, b) = Mxm +Nb for m = 1, 2, . . .

with
M = B−1 (B − A) and N = B−1

is called the splitting method .

Proposition 3.1.2 ([87] Section 4.1)

1. If B is invertible, the splitting method is consistent with A.

2. If ‖B−1 (B − A)‖Op < 1, the splitting method is convergent.

3.1.1.2 Jacobi Algorithm

Let A be a n × n matrix with non-zero diagonals. The Jacobi algorithm is
the splitting method used with with D = diag(S).

xm+1 = D−1(D − S)xm +D−1b

Theorem 3.1.3 ([87] Section 4.1.1) Let A be an invertible n× n matrix, if

1. max
i=1,...,n

∑
j=1,...,n

j 6=i

|ai,j |
|ai,i| < 1 ,

2. max
j=1,...,n

∑
i=1,...,n

j 6=i

|ai,j |
|ai,i| < 1 or

3.
∑

i,j=1,...,n

j 6=i

(
|ai,j |
|ai,i|

)2

< 1

then the Jacobi algorithm converges for every starting value x0 and every b
to a solution of Equation 3.1:

xm → A−1b for m→ ∞
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3.1.1.3 Preconditioning

A way to improve the numerical efficiency of an iterative algorithm to solve
a linear system of equations is preconditioning. Instead of solving the linear
system of equations Ax = b the the system PAx = Pb is solved for a properly
chosen preconditioning matrix P . To this end, the matrix P should be chosen
according to the following criteria:

1. P should be constructed within few operations, e.g. O (n log n).

2. P should be able to be stored in an efficient way

3. κ (PA) ≪ κ (A) .

Here κ (S) = ‖S−1‖Op · ‖S‖Op is the condition-number of the matrix, which
measures the stability of a linear equation system. The first two criteria are
intended to keep the number of operations and memory requirements below
those of the non-preconditioned system. The third criterion is intended to
control the numeric stability of the system. A sufficient condition for the
third criterion is a clustered spectrum, as κ(A) = σn

σ1
where σn and σ1 are

the largest and smallest singular values, respectively. A clustered spectrum
also yields a faster convergence (see [4, 84]).

Using the splitting method in Section 3.1.1.1 is equivalent to solving the
preconditioned equation B−1Ax = B−1b with the Neumann algorithm, see
Proposition A.4.9.

3.1.1.4 Remarks On The Operator Norm

We have seen above, that the use of the operator norm is the natural way to
measure the quality of an approximation as it satisfies ‖A · x‖ ≤ ‖A‖Op ‖x‖,
for all x ∈ Cn. Another important application of this norm is the condition-
number for invertible matrices. The problem with the operator norm is
that its computation is very costly. For example, it can be shown that the
operator norm of a self-adjoint operator is equal to its largest eigenvalue, and
the numerical calculation of the eigenvalues of an operator is numerically very
expensive, even if elaborated methods, see e.g. [123], are used.

3.1.2 Discrete Gabor Expansions

In this whole chapter we will consider the Hilbert space CL, and that the
lattice parameter a and b are factors of L (i.e., there exist integers ã and b̃
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such that a·ã = L and b· b̃ = L). We regard the vectors x ∈ CL as L-periodic,
and therefore we interpret the Kronecker symbol in a consistent way:

δi,j =

{
1 i = j mod L
0 otherwise

We will also always regard matrices to be periodic in the columns and rows
to make the notation shorter.

In this case, the modulation and time shift operators are discretized, i.e.,

Tlx = (xL−l, xL−l+1, . . . , x0, x1, . . . , xL−l−1)

and

Mkx =
(
x0 · ω0

n, x1 · ω1·k
L , . . . , xL−1 · ω(L−1)k

L

)
with ωL = e

2πi
L

Note that the translation is acting in a cyclic way.
Therefore we will consider the Gabor system

G(g, α, β) =
{
MbnTakg : k = 0, . . . , ã;n = 0, . . . , b̃

}

Notice that this is equivalent to sampling with sampling period T and
setting ω = k

LT
and τ = l · T .) The redundancy of G(g, α, β) is then red =

L/(ab).
In the discrete, finite-dimensional case, it is well known, see e.g. [122] that

the Gabor frame operator has a very special structure. The matrix S is zero
except in every b̃-th side-diagonals. These side-diagonals are also a-periodic.
This can be seen by using the Walnut representation of the operator, analogue
to Theorem 2.1.9, which can be expressed in the finite discrete case in the
following way:

Corollary 3.1.4

Sγ,gm,n =





b̃ ·
ã−1∑
k=0

g (m− ak) γ (n− ak) |m− n| = 0 mod b̃

0 otherwise

and therefore

Sγ,gfm = b̃ ·
b−1∑

p=0

f(m− pb̃)
ã−1∑

k=0

g(m− ak)γ(m− ak − pb̃)

︸ ︷︷ ︸
Gp(m)
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This can easily be proved directly or be found in [103]. Compare this result
to the continuous case and note the similarities to the correlation function
Gp(m).

This means that the matrix has a sparse nature, only every p-th side-
diagonal, Gp, is non-zero and they are a-periodic. The relevant entries can
be seen in the following figure:0BBBBBBBBBBBBBBBBBBB�

s0,0 s0,M . . .

s1,1 s1,M

. . .
. . .

sa−1,a−1 s0+a−1,M+a−1

s0,0 s0.M

. . .
. . .

sM−1,M−1

sM,0 sM,M

. . .
. . .

1CCCCCCCCCCCCCCCCCCCA
Clearly it can be represented by

(Sγ,g)m,n = b̃ · Xb̃(m− n) ·
ã−1∑

k=0

g (m− ak) γ (n− ak) . (3.2)

This means that S can be represented as a block matrix, either as a block
circulant matrix or as a block diagonal matrix. The set of matrices with
any of these structures form a matrix algebra, cf. Section 3.2. Therefore the
set of matrices which has both structures at the same time forms a matrix
algebra as well. We call them Gabor-type [104] or Walnut matrices, for more
on these special matrices see Section 3.2.

3.1.2.1 The Non-Zero Block Matrix

From the remarks stated above we know that we can find a smaller matrix
which describes S uniquely. To this end, the first a entries of the non-
zero side-diagonals are considered. In [104] the following block-matrix was
introduced:

Definition 3.1.3 Let (g, a, b), (γ, a, b) be Gabor frames, and S = Sγ,g be
their associated frame operator. Let B be the b× a matrix given by

Bi,j = Si·b̃+j,j

We call B a non-zero block matrix or the auto-correlation matrix of
the Gabor system G(g, a, b).
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So this matrix looks like this:

B =




S0,0 S1,1 . . . Sa−1,a−1

Sb̃,0 Sb̃+1,1 . . . Sb̃+a−1,a−1
...

...
S(b−1)·b̃,0 S(b−1)·b̃+1,1 . . . S(b−1)·b̃+a−1,a−1




This matrix can be found in the frame matrix by choosing the left-most
a×n sub-matrix, regarding only the non-zero side-diagonals and using these
as rows of the block matrix. See figure 3.1.

Figure 3.1: The Non-Zero Block Matrix.

The non-zero block matrix describes the frame matrix in a unique way.
Keep in mind that in this chapter matrices are also regarded as periodic in
rows and columns.

Corollary 3.1.5 Let B be the non-zero block matrix of the Gabor frame
matrix S = Sγ,g, then

Si,j = Xb̃(i− j)B⌊ i−j

b̃
⌋,j.

Proof: For a given S let Bi,j = Si·b̃+j,j. Then let

S ′
i,j := Xb̃(i− j)B⌊ i−j

b̃
⌋,j = Xb̃(i− j)S⌊ i−j

b̃
⌋·b̃+j,j

Let i− j mod b̃ 6= 0, then S ′
i,j = 0 = Si,j, see Equation 3.2.

Let i− j mod b̃ = 0, then there is a k such that i = j + k · b̃. Then

S ′
i,j = Xb̃(j + k · b̃− j)Sj j+k·b̃−j

b̃

k
·b̃+j,j = Sk·b̃+j,j = Si,j
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2

The auto-correlation matrix B provides the following useful properties:
S is diagonal if and only if B is zero except in the first row, and S is circulant
if and only if the rows of B are constant.

Combining Definition 3.1.3 and Corollary 3.1.4 the non-zero block matrix
can be expressed as

Bi,j = b̃

ã−1∑

k=0

g
(
ib̃+ j − ak

)
γ (j − ak) . (3.3)

From Corollary 3.1.5 it is clear that the reconstruction can be done by using
the following formula:

(Sx)j =
b−1∑

p=0

xj+pb̃ ·Bp,j+pb̃ (3.4)

There are two strategies to factorize S and exploit the structure of S, one
strategy uses the periodicity, the other the regular sparsity of this matrix.
We will look at matrices with this special structure, having diagonal blocks
or being block-circulant, in Section 3.2.

It is also possible to realize the multiplication of two Gabor operators by
using only ’non-zero’ block matrices, refer also to Section 3.2.4. This leads to
a very efficient algorithm with O(a · b · log(b)) operations, if the FFT is used
[107]. This idea can be incorporated in iterative schemes like the conjugate
gradient method.

3.1.2.2 Conditions For Gabor Frames

Lemma 3.1.6 ([103] Corollary 2)If (g, a, b) is a Gabor frame triple, all en-
tries in the main diagonal are strictly positive. If for (g, a, b) there is k0 ∈
{0, . . . , a − 1} such that g(k0 + na) = 0 for n = 0, . . . , a − 1, then it cannot
generate a frame.

Remember that with ĝ we denote the discrete Fourier transformation of
g, see Section A.3.6

Theorem 3.1.7 ([103] Theorem 3) The Gabor system (g, a, b) is a Gabor
frame if and only if (ĝ, b, a) forms a Gabor frame. Then

Sg ◦ FL = L · FL ◦ Sĝ
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Corollary 3.1.8 ([103] Corollary 7) A necessary condition for the Gabor
system (g, a, b) to generate a Gabor frame is that there are at least a non-
zero coordinates of g and there are at least b nonzero coordinates of ĝ.

In [103] there is another corollary dealing with sufficient conditions for
Gabor frames, which is corrected and extended in Corollary 3.4.2.

3.1.2.3 Special Conditions On The Window And The Lattice

If g or ĝ fulfills the following conditions, it is well known that the frame
matrix has a very simple structure, see e.g. [124] or [122], which can be seen
as consequence of the Walnut representation and Theorem 3.1.7.

Theorem 3.1.9 1. If the length of the support of g |supp(g)| ≤ b̃ then
the associated Gabor frame operator for the Gabor system (g, a, b) is
represented by a diagonal matrix.

2. If the bandwidth of g, |supp(ĝ)| ≤ ã then the associated Gabor frame
operator for the Gabor system (g, a, b) is represented by a circulant
matrix.

Also if the biggest and smallest possible choices for the lattice parameters
are chosen, then we get a very special structure, which also can be readily
deduced from the Walnut representation:

Theorem 3.1.10 1. For the Gabor system (g, a, 1) the associated Gabor
frame operator is represented by a diagonal matrix.

2. For the Gabor system (g, 1, b) the associated Gabor frame operator is
represented by a circulant matrix.

Proof: Theorem 3.1.10 (1) was proved in [103]. This is also a direct
consequence of the Walnut representation and the fact that in this case b̃ = L.

Theorem 3.1.10 (2) is also apparent from the Walnut representation, as we
know that the side-diagonals are a-periodic. If a = 1 then they are constant.
2

With these results Theorem 3.1.9 can be reformulated: If the frequency
sampling is dense enough, then the Gabor frame matrix is diagonal. If the
time sampling is dense enough, then the Gabor frame matrix is circulant.

In all these special cases, it is easy to determine, whether the matrix is
invertible and so the system forms a frame. It is also easy to find the inverse
matrix, which will be used in Section 3.4.
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3.1.2.4 The Janssen Matrix

In addition to the auto-correlation matrix defined above, there is another
“small” (b×a) matrix, which fully describes the frame matrix S as a discrete
analog to Theorem 2.1.10:

Definition 3.1.4 The Janssen matrix of S is the a × b matrix J , given
by

(J)k,l =
L

a · b · ck,l
with ck,l = (Vg(γ)) (lL/b, kL/a).

The set of time-frequency shifts normed with the factor 1√
L

forms an
orthonormal for the Hilbert-Schmidt inner product, see Proposition 3.2.3.
The entries of the Janssen-matrix are given by ck,l =

〈
γ,MkL/aTlL/bg

〉
and

according to Lemma 3.2.25 they are the coefficients (up to a factor) of the
following expansion:

Definition 3.1.5 We call

Sg,γ =
L

a · b
a−1∑

k=0

b−1∑

l=0

ck,lMkãTlb̃ (3.5)

the Janssen-representation of S.

We will revisit this matrix in Section 3.2.

3.1.2.5 Higher Dimensional Approach

For the biggest part of this chapter we will mostly use one-dimensional spaces.
In Section 3.4.3.5 the new double preconditioning algorithm will be used for
the two-dimensional case. We will only use separable windows, which means
that g = g1⊗g2⊗. . .⊗gm , i.e. g(x1, x2, . . . , xm) = g1(x1)·g2(x2)·. . .·gm(xm).
In this case Sg = Sg1 ⊗ Sg2 ⊗ . . . ⊗ Sgm

and all questions can be reduced to
the one-dimensional case, cf. [103].

3.1.2.6 The Strohmer Algorithm

Important algorithms for inverting a frame matrix are the frame algorithms,
cf. 1.2.13, and the conjugate gradient method , cf. 1.2.14, which both work
for any frame. Strohmer [122] and Prinz [99] have invented a fast algorithms
for Gabor frames, exploiting the special block structure of the Gabor frame
matrix: From the Walnut representation it is clear that the Gabor frame
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matrix on a lattice with parameters a, b can be represented by a matrix with
b diagonal blocks or an a-block-circulant matrix. For a further investigation
of this structure we refer to Section 3.2. In [122] the Gabor frame matrix
is represented by even smaller block-matrices, which enables the numerically
efficient computation of the inverse matrix by the inverse of the small matri-
ces. There it has been proved that even if a non-iterative and slow algorithm
for the inversion of a matrix is used, this algorithm is quite effective if there
is a number-theoretical relation between a and b̃ or b and ã, meaning there
is a common factor dividing both numbers. For more see [122].

3.2 Matrices

Some results here have already been used e.g. in [122] [124]. So, especially at
the beginning, this section is meant as rigorous summary of these statements.

3.2.1 The Matrix For The Translation And Modula-
tion

The translation and modulation on CL can, as linear operators, be obviously
expressed as matrices.

Corollary 3.2.1 For the (circular) translation on CL

T
(L)
k x = (xL−k, xL−k+1, . . . , x0, x1, . . . , xL−k−1)

(
T

(L)
k f

)
l
= f

(l−k) mod L

the matrix representation is
T

(L)
k = Πk

L

where
(ΠL)i,j = δi,j+1 = δi−1,j

ΠL =




0 0 · · · 0 1
1 0 · · · 0 0
...

...
. . . . . .

...
0 0 · · · 1 0




The multiplication from the left, Πk
L · A, results in a shift of the rows down,

the multiplication from the right results in a shift of columns to the left:
(
Πk
L · A

)
i,j

= Ai−k,j and
(
A · Πk

L

)
i,j

= Ai,j+k

For the adjoint Π∗
L = ΠL−1

L the opposite properties hold.
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Proof:

(ΠL · c)i =
L−1∑

l=0

δi−1,lcl = ci−1

so T1 is represented by ΠL. As Tk = T1 ◦ . . . ◦ T1︸ ︷︷ ︸
k times

we have Tk = Πk
L.

Using Lemma A.3.7 it is clear that ΠL · A results in a shift of the rows
down, (ΠLA)k,l = Ak−1,l.

(A · ΠL)k,l =
∑

j

Ak,j (ΠL)j,l =
∑

j

Ak,j · δj,l+1 = Ak,l+1

2

Obviously a similar result can also be stated for modulations:

Corollary 3.2.2 For the modulation on CL

Mkx =
(
x0 · ω0

L, x1 · ω1·k
L , . . . , xL−1 · ω(L−1)k

L

)
with ωL = e

2πi
L .

(Mkf)l = e−2πikl/Lfl

the matrix representation is
Mp = Ωp

L

where
ΩL = diag(1, ωL, ω

2
L, · · · , ωL−1

L )

(ΩL)i,j = δi,jω
i
L

and the adjoint is

Ω∗
L = diag(1, ω−1

L , ω−2
L , · · · , ω−(L−1)

L )

From Section A.3.5.1 we know that the L× L matrices are algebraically
isomorph to the vector space CL2

with

M 7→ vec(L)(M).

Proposition 3.2.3 1. The norms of the time-frequency shifts are

(a) ‖MkTl‖Op = 1

(b) ‖MkTl‖fro =
√
L
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2. The system
(
MkTl√
L

|k, l = 0, . . . L− 1
)

is an orthonormal basis for the

vector space of all L× L matrices with 〈., .〉HS as inner product.

Proof: 1a) is the equivalent to Lemma 2.1.1. It can also be shown directly:

(MkTlf)i = ωkiL fi−l

=⇒ ‖MkTlf‖2
2 =

L−1∑

i=0

∣∣ωkiL fi−l
∣∣2 =

L−1∑

i=0

|fi−l|2 = ‖f‖2
2

1b)

(MkTl)p,q =
L−1∑

j=0

δp,j · ωpkL · δj,q+l = δp,q+l · ωpkL (3.6)

⇐⇒ ‖MkTl‖2
fro =

L−1∑

p=0

L−1∑

q=0

∣∣∣δp,q+l · ωpkL
∣∣∣
2

=
L−1∑

q=0

∣∣∣ω(q+l)k
L

∣∣∣
2

= L

2)

〈MkTl,Mk′Tl′〉fro =
L−1∑

p=0

L−1∑

q=0

(MkTl)p,q · (Mk′Tl′)p,q =

=
L−1∑

p=0

L−1∑

q=0

δp,q+l · ωpkL · δp,q+l′ω−pk′
L =

L−1∑

q=0

ω
(q+l)·k
L · δq+l,q+l′ · ω−(q+l′)k′

L =

= ωl·kL ·ω−l′·k′
L

L−1∑

q=0

ω
q·(k−k′)
L · δl,l′ Poisson= ωl·kL ·ω−l′·k′

L ·L · δk,k′ · δl,l′ = L · δ(k,l),(k′,l′)

2

The commutation of time-frequency shifts, see Lemma 2.1.1, in the finite
case is the following statement:

Corollary 3.2.4 Let Tk be the translation and Ml the modulation on CL.
Then

ωlkL (TkMl) = (MlTk)

Proof:

(TkMl)i,j =
L−1∑

p=0

δi,p+kδp,jω
lj
L = δi,j+kω

lj
L

(MlTk)i,j =
L−1∑

p=0

δi,pω
li
Lδp,j+k = ωliLδi,j+k = δi,j+kω

l(j+k)
L = ωlkL · δi,j+kωljL
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=⇒ ωlkL (TkMl) = (MlTk)

2

3.2.2 Diagonal And Circulant Matrices

Definition 3.2.1 An L× L-matrix M is called circulant, if there exists
h ∈ CL such that

Mij = h(i−j)modL

Circulant matrices correspond to cyclic convolution operators as

M · x =
L−1∑

j=0

Mi,j · xj =
L−1∑

j=0

hi−j · xj = (h ∗ x) (i) (3.7)

Lemma 3.2.5 A matrix M is circulant if and only if it commutes with all
(cyclic) translations.

M · Tk = Tk ·M

Proof: For all k

M · Tk = Tk ·M ⇐⇒ T ∗
k ·M · Tk = M

Mi+k,j+k = Mi,j ⇐⇒Mi,j = hi−j

2

It’s easy to see that

Proposition 3.2.6 A matrix M is circulant if and only if it can be described
uniquely as linear combination of (cyclic) translation matrices.

M =
L−1∑

k=0

ck · Tk

Proof: A matrix is circulant, if and only if the side-diagonals are constant.
Clearly we can represent this matrix by matrices Mk, where only the l-th
side-diagonal is non-zero and constant, cl. From Corollary 3.2.1 we know
that this matrix can be represented by cl ·Πl

L. The opposite direction of the
inclusion is obvious. 2

Similar statements can be made for diagonal matrices:
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Lemma 3.2.7 A matrix A is diagonal if and only if it commutes with all
modulations.

A ·Mk = Mk · A

Proof: For p, q = 0, . . . , L− 1:

(Mk · A ·M∗
k )p,q =

∑

i

∑

j

δi,p · ωpkL · Ai,j · δj,q · ω−jk
L =

= ωpkL · Ap,q · ω−qk
L =⇒

Ap,q = (Mk · A ·M∗
k )p,q ⇐⇒ Ap,q = ω

(p−q)·k
L · Ap,q

Let p = q, then this is always true for all k. So we see that diagonal matrices
always commute with the modulation. Let p 6= q and suppose Ap,q 6= 0, then
for k = 1

ω
(p−q)
L = 1 =⇒ p− q = 0 mod L =⇒ p− q = 0

This is a contradiction, so for all p 6= q Ap,q = 0. 2

Proposition 3.2.8 A matrix S is diagonal if and only if it can be described
uniquely as linear combination of modulations.

S =
L−1∑

p=0

ck ·Mk

Let d = diag(S) then ck = 1
L

(
d̂
)
k
.

Proof: If S looks like that, it clearly is diagonal.
Let S be a diagonal matrix, and let d = diag(S) be its diagonal. Following

Theorem A.3.10 we can represent d with the ONB fk(i) = 1√
L
ωk·iL .

di =
L−1∑

k=0

c′k
1√
L
ωk·iL

Therefore

M = diag(d) =
L−1∑

k=0

c′k
1√
L

diag(ωk·iL ) =
L−1∑

k=0

ckΩ
k
L

where ck =
c′
k√
L
.
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The coefficients are

c′k = 〈d, fk〉 =
L−1∑

i=0

di ·
1√
L
· ω−k·i

L =
1√
L
d̂(k)

And therefore

ck =
1

L

(
d̂
)
k

2

3.2.3 Matrix Fourier Transformation

The notion of Fourier transformation can be easily extended to matrices, as
used in [122]. Remember that Fn is the Fourier-matrix, Fni,j = ω−i·j

n , cf.
Section A.3.6.

Definition 3.2.2 Let A ∈ Mm,n. The Matrix Fourier Transformation
(MFT) of A is defined by

F(A) = Â = Fm ◦ A ◦ F∗
n

Therefore

F(A)i,j =
m−1∑

p=0

n−1∑

q=0

ω−i·p
m · Ap,q · ωq·jn (3.8)

This is not the same as the 2-dimensional Fourier transformation, which
is F2(A) = Fm · A · Fn, but obviously F2(A)(p, q) = Â(p,−q).

We can show the following properties

Lemma 3.2.9 For A,A′ ∈Mm,n, B ∈Mn,p we have

• F−1(A) = Ǎ = F ∗
m ◦ S ◦ Fn is the inverse transformation.

• Â ·B = Â · B̂.

• M̂k = Tk and T̂k = M−k .

• (̂Af) = Âf̂

• Â ∗ A′ = Â⊙ Â′ where ⊙ is the pointwise product (see also A.3.17) and
∗ is the convolution of matrices as defined in Section A.3.6.1.
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Proof: 1)
F−1 (F (A)) = F∗

m (Fm ◦ A ◦ F∗
n)Fn = A.

With an analogue argument F (F−1 (A)) = A.
2.)

F(A ·B) = Fm ◦ A ◦B ◦ F∗
p = Fm ◦ A ◦ F ∗

n ◦ Fn ◦B ◦ F∗
p

3.)
(
M̂k

)
l1,l2

=
L−1∑

i=0

L1∑

j=0

ω−l1·i
L · δi,j · ωkjL · ωj·l2L =

=

L1∑

j=0

ω−l1·j
L · ωkjL · ωj·l2L =

L1∑

j=0

ω
(−l1+k+l2)·j
L = δl1,l2+k = (Tk)l1,l2

(
T̂k

)
l1,l2

=
L−1∑

p=0

L−1∑

q=0

ω−i·p
L δp,q+kω

q·j
L =

=
n−1∑

q=0

ω
−i·(q+k)
L ωq·jL =

n−1∑

q=0

ω−i·k
L ω

q·(j−i)
L = ω−i·k

L δi,j = (M−k)i,j

4.)

(̂Tf) = Fm · T · f = Fm · T · (F∗
n · Fn) · f = T̂ f̂

5.)

(A ∗ A′)k,l =
m−1∑

i1=0

n−1∑

i2=0

Ai1,i2 · A′
k−i1,l−i2 =⇒

(Fm · (A ∗ A′) · F∗
n)p,q =

m−1∑

k=0

n−1∑

l=0

ω−p·k
m ·

m−1∑

i1=0

n−1∑

i2=0

Ai1,i2 · A′
k−i1,l−i2 · ωl·qn =

=
m−1∑

i1=0

n−1∑

i2=0

Ai1,i2 ·
m−1∑

k=0

n−1∑

l=0

ω−p·k
m A′

k−i1,l−i2 · ωl·qn =

=
m−1∑

i1=0

n−1∑

i2=0

Ai1,i2 ·
m−1∑

k′=0

n−1∑

l′=0

ω−p·(k′+i1)
m A′

k′,l′ · ω(l′+i2)·q
n =

=
m−1∑

i1=0

n−1∑

i2=0

ω−p·i1
m Ai1,i2ω

i2q
n ·

m−1∑

k′=0

n−1∑

l′=0

ω−p·k′
m A′

k′,l′ · ωl
′·q
n =

= Âp,q · Â′
p,q

2
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Theorem 3.2.10 1. (Plancherel) The MFT is an isometry for ‖.‖Op

2. (Parseval)
〈
Â, B̂

〉
fro

= 〈A,B〉fro

3. The MFT is an isometric isomorphism for ‖.‖Op and ‖.‖fro

Proof: 1.) Let T be a matrix. We know that f 7→ f̂ is a bijective isometric
function from CL to CL with ‖.‖2 and so

∥∥∥T̂
∥∥∥
Op

= sup
‖g‖2=1

{∥∥∥T̂ g
∥∥∥
}

= sup
‖ bf‖

2
=1

{∥∥∥T̂ f̂
∥∥∥
}

=

= sup
‖f‖2=1

{∥∥∥T̂ f
∥∥∥
}

= sup
‖f‖2=1

{‖Tf‖} = ‖T‖Op

2.) Let A, b ∈Mm,n.

〈
Â, B̂

〉
fro

= 〈FmAF∗
n,FmBF∗

n〉fro
A.3.8
=

= 〈F∗
mFmA,BF∗

nFn〉fro = 〈A,B〉fro
3.) Clear from above and Lemma 3.2.9. 2

Theorem 3.2.11 For a circulant matrix M the matrix M̂ is diagonal.
For a diagonal matrix D the matrix D̂ is circulant.

Proof: This is now a direct consequence of Lemma 3.2.6, Proposition 3.2.8
and Lemma 3.2.9 as

M =
L−1∑

k=0

ck · Tk ⇐⇒ M̂ =
L−1∑

k=0

ck ·M−k

and vice versa. 2

Therefore a circulant matrix A is invertible, if and only if Â has no zeros
in the diagonal. This connection will be used in Section 3.4.1.3.
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3.2.4 Block Matrices

Every matrix L×L A can be written as block matrix in the following sense:

A =




B0,0 B0,1 · · · B0,b−1

B1,0 B1,1 · · · B1,b−1
...

...
. . .

...
Bb−1,0 Bb−1,1 · · · Bb−1,b−1


 (3.9)

where the Bi,j are b̃× b̃ matrices, where b̃ = L
b
.

Let us fix notations: let the b× b matrix be

E
(b)
k = diag(δk),

(
E

(b)
k

)
i,j

= δk,i · δk,j

with δk the k-th unit vector in Cb. Also let for i, j = 0, . . . , b− 1

(
E (b×b)
k,l

)
i,j

= δk,i · δl,j =

{
1 k = i, l = j
0 otherwise

Clearly

Lemma 3.2.12

E (b×b)
k,l = Tk−l · E(b)

l and TkE
(b)
l = E (b×b)

k+l,l

Proof:
(
Tk−l · E(b)

l

)
i,j

=
b−1∑

p=0

δi,p+(k−l) · δl,p · δl,j =

= δi,l+(k−l) · δl,j = δi,k · δl,j =
(
E (b×b)
k,l

)
i,j

2

Using the Kronecker product defined in Section A.3.7, another way to
express the block structure in 3.9 is :

A =
b−1∑

i=0

b−1∑

j=0

E (b×b)
i,j ⊗B′

i,j =
b−1∑

i=0

b−1∑

j=0

(
Ti−j · E(b)

j

)
⊗B′

i,j
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3.2.4.1 Matrices with Diagonal Blocks

Definition 3.2.3 An L×L matrix M is called a b-block-diagonal matrix
if

M =




D0 0 · · · 0

0 D1
. . .

...
...

. . . . . . 0
0 · · · 0 Db̃−1




where b̃ = L
b

and the Dj are arbitrary b× b-matrices.
A matrix M is called a matrix with b diagonal blocks if

M =




D0,0 D0,1 · · · D0,b−1

D1,0 D1,1 · · · D1,b−1
...

...
. . .

...
Db−1,0 Db−1,1 · · · Db−1,b−1




where L = b̃ · b and the Dj are diagonal b̃× b̃-matrices.

Clearly matrices with b diagonal blocks have only b non-zero side-diagonals,
more precisely only every b̃-the side-diagonal is non-zero. So the frame matrix
for a Gabor frame has such a structure.

Proposition 3.2.13 1. A matrix M is b-block-diagonal if and only if

M =
b̃−1∑

k=0

E
(b̃)
k ⊗Dk

2. A matrix M has b diagonal blocks if and only if

M =
b̃−1∑

k=0

Bk ⊗ E
(b̃)
k

The Dk are defined as in definition 3.2.3 and (Bk)l,m = Mk+lb̃,k+mb̃ =
(Dl,m)k with the Dl,m as in 3.2.3.

Proof: 1) is obvious from the definition of the Kronecker product in Section
A.3.7.

2) First let M be a matrix with b diagonal blocks (like in Definition 3.2.3).
Then

M =
b−1∑

i=0

b−1∑

j=0

E (b×b)
i,j ⊗Di,j
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Let Di,j = diag(d(i,j)), then for each p let p1 =
⌊
p

b̃

⌋
and p2 = p mod b̃ such

that p = p1 · b̃+ p2 and a similar decomposition for q = q1 · b̃+ q2, then

Mp,q =
b−1∑

i=0

b−1∑

j=0

δi,p1 · δj,q1 · δp2,q2 · d(i,j)
p2

= δp2,q2 · d(p1,q1)
p2

On the other hand let (Bk)l,m = (Dl,m)k = d
(l,m)
k , then clearly the matrix

M is uniquely described by these matrices. Then
(
Bk ⊗ E

(b̃)
k

)
p,q

= d
(p1,q1)
k · δp2,k · δq2,k =⇒




b̃−1∑

k=0

Bk ⊗ E
(b̃)
k



p,q

=
b̃−1∑

k=0

d
(p1,q1)
k · δp2,k · δq2,k =

= d(p1,q1)
p2

· δq2,p2
2

This representation is obviously unique. So in ML×L there are b̃ ·b2 = L ·b
b-block-diagonal matrices resp. b̃2 · b = L · b̃ matrices with b diagonal blocks.

Lemma 3.2.14 The product of two b-block-diagonal matrices again is b-
block-diagonal. If A =

∑
k

Ek ⊗Dk and B =
∑
k

Ek ⊗ Ck then

C = A ·B =
∑

k

Ek ⊗ (Dk · Ck)

The product of two matrices with b diagonal blocks is again a matrix with
b diagonal blocks. Let D

(A)
l,j be the diagonal blocks of A and D

(B)
j,m of B, then

the diagonal blocks of C = A ·B are

D
(C)
l,m =

∑

j

D
(A)
l,j ⊙D

(B)
j,m

Proof: Using Proposition A.3.12 we get:

A ·B =
∑

k

∑

l

(Ek ⊗Dk) · (El ⊗ Cl) =
∑

k

∑

l

(Ek · El) ⊗ (Dk · Cl)

(Ek · El)p,q =
∑

i

δk,p · δk,i · δi,l · δq,l = δk,p · δk,l · δq,l = δk,l · (Ek)p,q
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and so the first part is proved. With an analogous argument the same is true
for matrices with diagonal blocks.

Using Proposition 3.2.13 we know that
(
D

(C)
l,m

)
k,k

= (Dk · Ck)l,m =

=
∑

j

(Dk)l,j · (Ck)j,m =
∑

j

(
D

(A)
l,j

)
k,k

·
(
D

(B)
j,m

)
k,k

2

Lemma 3.2.15 A matrix A has b diagonal blocks if and only if it commutes
with all translations Mlb.

A ·Mlb = Mlb · A

Proof: This is analogous to Lemma 3.2.7: For p, q = 0, . . . , L− 1:

(Mlb · A ·M∗
lb)p,q =

∑

i

∑

j

δi,p · ωplbL · Ai,j · δj,q · ω−jlb
L =

= ωplbL · Ap,q · ω−qlb
L =⇒

Ap,q = (Mlb · A ·M∗
lb)p,q ⇐⇒ Ap,q = ω

(p−q)·lb
L · Ap,q

Let p − q mod b̃ = 0, then (p− q) lb mod L = 0 for all l and so the
above statement is true. This means that matrices, where only every b̃-th
side-diagonal is non-zero, fulfill this condition. So one direction is proved.

Let p− q mod b̃ 6= 0 and suppose Ap,q 6= 0, then for l = 1

ω
(p−q)b
L = 1 ⇐⇒ ω

(p−q)
b̃

= 1

=⇒ p− q mod b̃ = 0

This is a contradiction, so for all p− q mod b̃ 6= 0 Ap,q = 0. 2

It is also possible to use modulation to describe such a matrix

Proposition 3.2.16 A matrix M has b diagonal blocks if and only if

M =
b−1∑

k=0

Πkb̃
L D

′
k ,

where D′
k =

b−1∑
l=0

El ⊗Dl+k,l+k is a diagonal L× L matrix. (Di,j as in 3.2.3.)
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Proof: These matrices are exactly those, where only every b̃-th side-
diagonal is non-zero. A matrix consisting only of the k · b̃ side-diagonal
can be represented as Tkb̃ · diag(dk). So every matrix with b diagonal blocks
has this form, where the D′

k are the entries in the kb̃-th side-diagonal. This
diagonal matrix is composed by the diagonal blocks Dl,m situated at these
side-diagonals. So using the definition of the Kronecker product, cf. Defini-
tion A.3.16, this clearly means

D′
k =

b−1∑

l=0

El ⊗Dl+k,l+k

2

For these matrices the following properties have been shown in [122],
which use the connection in Proposition 3.2.13 between (Bk)l,m = (Dl,m)k to
do a reordering:

Theorem 3.2.17 ([122] Theorem 8.3.1) Let S be a matrix with b diagonal
blocks Di, then S can be unitarily factorized into a b-block-diagonal matrix
diag(D0, . . . , Db−1).

3.2.4.2 Block Circulant Matrices

Definition 3.2.4 A matrix M is called a a-block-circulant matrix if

M =




A0 A1 · · · Aã−1

Aã−1 A0 · · · Aã−2

. . . . . . . . . . . .

A1 A2 · · · A0




where L = a · ã and the Aj are arbitrary a× a matrices.
A matrix M is called a matrix with a circulant blocks if

M =




A0,0 A0,1 · · · A0,a−1

A1,0 A1,1 · · · A1,a−1
...

...
. . .

...
Aa−1,0 Aa−1,1 · · · Aa−1,a−1




where L = a · ã and the Aj,k are circulant ã× ã-matrices.

Clearly
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Corollary 3.2.18 The a-block-circulant matrices are exactly those matrices
that have a-periodic side diagonals.

Following Equation (3.2) a Gabor frame matrix is an a-block-circulant ma-
trix.

Lemma 3.2.19 A matrix M is a-block-circulant if and only if it commutes
with all translations Tk·a.

M · Tka = Tka ·M

Proof: Proof is similar to the one of Lemma 3.2.5: For all k

M · Tka = Tka ·M ⇐⇒ T ∗
kaM · Tka = M ⇐⇒Mi+ka,j+ka = Mi,j

and so the side-diagonals are all a-periodic. 2

Proposition 3.2.20 1. A matrix M is a-block-circulant if and only if

M =
ã−1∑

k=0

T
(ã)
k ⊗ Ak

2. A matrix M has a circulant blocks if and only if

M =
ã−1∑

k=0

Ck ⊗ T
(ã)
k

Here Ak is like in 3.2.4 and (Ck)j,l = (Aj,l)0,k

Proof: 1) is obvious from the definition of the Kronecker product in Section
A.3.7.

2) First let M be a matrix with b diagonal blocks (like in Definition 3.2.4)
. Then

M =
a−1∑

i=0

a−1∑

j=0

E (a×a)
i,j ⊗ Ai,j

Let for each p let p1 =
⌊
p
ã

⌋
and p2 = p mod ã such that p = p1 · ã + p2

and a similar decomposition for q = q1 · b̃+ q2, then

Mp,q =
a−1∑

i=0

a−1∑

j=0

δi,p1 · δj,q1 · (Ai,j)p2,q2 = (Ap1,q1)p2,q2

153



On the other hand let (Ck)j,l = (Aj,l)0,k and let

M =
a−1∑

k=0

Ck ⊗ T
(a)
k

then

Mp,q =
a−1∑

k=0

(Ap1,q1)0,k · δp2,q2+k =
a−1∑

k=0

(Ap1,q1)0,k · δp2−q2,k = (Ap1,q1)0,p2−q2

This is equal to the above formula as all the Ai,j are circulant. 2

Again a property shown in [122] is valid for these matrices:

Theorem 3.2.21 ([122] Theorem 8.3.3) Let S be a a-circulant matrix. It can
be unitarily factorized with (FN ⊗ Ia)

∗ into a block diagonal matrix, where Ia
is the identity of Ca.

Lemma 3.2.22 The product of two a-block-circulant matrices again is a-
block-circulant. If A =

∑
k

Tk ⊗ Ak and B =
∑
k

Tk ⊗ Bk then C = A · B =
∑
k

Tk ⊗ Ck where

Ck =
∑

l

A
(k−l) mod ã

·Bl

The product of two matrices with a circulant blocks is again a matrix with
a circulant blocks. Let Al,j be the circulant blocks of A and Bj,m of B, then
the circulant blocks of C = A ·B are

(Cp,q)0,k =
ã−1∑

l=0

ã−1∑

r=0

(Ap,r)l,k · (Br,q)0,l

Proof:

A ·B =

(
ã−1∑

k=0

Tk ⊗ Ak

)
·
(
ã−1∑

l=0

Tl ⊗Bl

)
=

Prop.A.3.12
=

ã−1∑

k=0

ã−1∑

l=0

(Tk · Tl) ⊗ (Ak ·Bl) =
ã−1∑

k=0

ã−1∑

l=0

Tk+l ⊗ (Ak ·Bl) =

k′=k+l
=

ã−1∑

k′=0

ã−1∑

l=0

Tk′ ⊗ (Ak′−l ·Bl) =
ã−1∑

k=0

Tk ⊗
(
ã−1∑

l=0

(Ak−l ·Bl)

)

154



For matrices with b circulant blocks the same proof shows

C = A ·B =
ã−1∑

k=0

(
ã−1∑

l=0

(Ak−l ·Bl)

)
⊗ Tk

So

(Cp,q)0,k = (Ck)p,q =

(
ã−1∑

l=0

(Ak−l ·Bl)

)

p,q

=

=
ã−1∑

l=0

ã−1∑

r=0

(Ak−l)p,r · (Bl)r,q =
ã−1∑

l=0

ã−1∑

r=0

(Ap,r)0,k−l · (Br,q)0,l =

=
ã−1∑

l=0

ã−1∑

r=0

(Ap,r)l,k · (Br,q)0,l

2

Theorem 3.2.23 1. Let M be a matrix with b diagonal blocks, then M̂
is a b-block-circulant matrix.

2. Let M be an a-block-circulant matrix, then M̂ has a diagonal blocks.

Proof: This is a direct consequence of Lemma 3.2.19, 3.2.15 and 3.2.9.

M · Tka = Tka ·M ∀k ⇐⇒ M̂ ·M−ka = M−ka · M̂ ∀k

2

3.2.5 Gabor-Type Matrices

Definition 3.2.5 We will call an a-block circulant matrix with b diagonal
blocks an (a, b)-Walnut-matrix or Gabor-type matrix.

The example for such a matrix is of course the Gabor frame matrix for
(g, a, b). Every (a, b)-Walnut-matrix S can be represented by a a × b-block
B (for a MATLAB-code see B.4.2.2), refer to [103] and [104]. With the
investigation of block matrices above, we have the following results as direct
consequences:

Corollary 3.2.24 For a given matrix the following properties are equivalent
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1. having a Walnut representation, i.e. being an a-block-circulant matrix
with b diagonal blocks.

2. commuting with all Mka and Tlb for all k, l ∈ Z.

3. being represented by a Janssen matrix, i.e. being in the space spanned
by {MkãTlb̃} for k = 0, . . . , a− 1,l = 0, . . . , b− 1.

Proof: The equivalence 1) ⇐⇒ 2) is a direct consequence of Lemma 3.2.19
and Lemma 3.2.15.

If a matrix has a Walnut representation, we know from Section 3.1.2.1,
that it can be represented uniquely by a small b×amatrix, the non-zero block
matrix. So the space of all such matrices has the dimension a · b. Following
Lemma 2.1.12 it is evident that the matrices {MkãTlb̃} are in this space, and
following Proposition 3.2.3 they are linear independent. The space of matri-
ces spanned by the sequence {MkãTlb̃ : k = 0, . . . , a− 1, l = 0, . . . , b− 1} has
the dimension a · b. So the two spaces coincide.

2

This means that for Gabor-type matrices the definition of the Janssen matrix,
the Walnut representation respectively the non-zero block matrix can be
used.

3.2.5.1 The Janssen Matrix

The set of time-frequency shifts normed with the factor 1√
L

forms an ortho-
normal sequence for the Hilbert-Schmidt inner product, as stated in Propo-
sition 3.2.3. Let us investigate the coefficients for a representation using this
basis:

Corollary 3.2.25 The Gabor frame matrix for (g, γ, a, b) can be represented
by

Sg,γ =
L

a · b
b−1∑

l=0

a−1∑

k=0

ck,lMkãTlb̃

with ck,l = (Vg(γ))
(
lL
b
, kL

a

)

Proof: S is a a-circulant matrix with b diagonal blocks. We know that this
space is spanned by the ONB 1√

L
·MlãTkb̃. So

S =
a−1∑

k=0

b−1∑

l=0

〈
S,
MkãTlb̃√

L

〉

fro

· MkãTlb̃√
L

=
1

L

a−1∑

k=0

b−1∑

l=0

〈S,MkãTlb̃〉fro ·MkãTlb̃
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〈S,MkãTlb̃〉fro =

〈
∑

λ∈Λ

γλ ⊗ gλ,MkãTlb̃

〉

fro

=

=
∑

λ∈Λ

〈γλ,MkãTlb̃gλ〉CL =
∑

λ∈Λ

〈γ, π(λ)∗MkãTlb̃π(λ)g〉
CL =

Lem.2.1.12
=

∑

λ∈Λ

〈γ, π(λ)∗π(λ)MkãTlb̃g〉CL = #Λ · 〈γ,MkãTlb̃g〉CL =

=
L

a

L

b
Vgγ(lb̃, kã)

And so the coefficients of these representations are

ck,l =
1

L
· L
a

L

b
Vgγ(lb̃, kã) =

L

a · bVgγ(lb̃, kã)

2

It is possible to show, see e.g. [124], that result by using the matrix represen-
tation of Sg,γ and MlãTkb̃, but we have used a shorter, albeit more abstract
proof.

3.2.5.2 Janssen Multiplication

We know that the product of a-circulant matrices and matrices with b di-
agonal blocks have the same property again. So it is clear that the product
of Gabor-type matrices is a Gabor-type matrix again, as stated in [104] and
[124]. We will extend these results and investigate how the Janssen repre-
sentation of this product looks.

In [104] Theorem 2 and algorithm was presented to do the multiplication
of two Gabor frame matrices on the block matrix level:

Theorem 3.2.26 Let S1, S2 be two Gabor-type matrices and S3 = S1 · S2.
Let Bi the non-zero block matrix of Si, then

(B3)p,q =
b−1∑

p=0

(B1)p,q · (B2)r1(p,q),r2(p,q)

with r1(p, q) = b+ q − p+ 1 mod b and r2(p, q) = q + (p− 1)b̃ mod a.

We are going to give a similar result for the Janssen-Matrix. For that we
need the definition of the twisted convolution, following [64]:
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Definition 3.2.6 Let θ > 0 and let M,N be (possibly) infinite matrices.
Then we define the twisted convolution by

(M♮θN)k,l =
∑

p

∑

q

Mp,q ·Nk−p,l−q · e2πiθ(k−p)·q

Clearly |M♮θN |k,l ≤ (|M | ∗ |N |)k,l and so some properties from the (normal)
convolution can be extended to the twisted convolution.

Theorem 3.2.27 The product of two Gabor-type matrices S1,S2 again is a
Gabor-type matrix

S3 = S1 · S2

Let Ji be the Janssen matrix of Si, then

J∗
3 = J∗

2 ♮ L
a·b
J∗

1

Proof: Gabor-type matrices are a-circulant-block matrices and matrices
with b diagonal blocks. Following Lemma 3.2.22 and Lemma 3.2.14 their
product is, too.

According to Corollary 3.2.24 there are ck,l,dk,l such that

S1 =
a−1∑

k1=0

b−1∑

l1=0

ck1,l1Mk1ãTl1b̃

S2 =
a−1∑

k2=0

b−1∑

l2=0

dk2,l2Mk2ãTl2b̃

Then

S3 = S1 · S2 =
a−1∑

k1,k2=0

b−1∑

l1,l2=0

ck1,l1 · dk2,l2Mk1ãTl1b̃ ·Mk2ãTl2b̃ =

Cor.3.2.4
=

a−1∑

k1,k2=0

b−1∑

l1,l2=0

ck1,l1 · dk2,l2 · i−k2·ã·l1·b̃L Mk1ã ·Mk2ã · Tl1b̃ · Tl2b̃ =

=
a−1∑

k1,k2=0

b−1∑

l1,l2=0

ck1,l1 · dk2,l2 · e−
2πik2·ã·l1·b̃

L M(k1+k2)ã · T(l1+l2)b̃ =

Let k3 = k1 + k2 and l3 = l1 + l2, then

=
a−1∑

k2=0

b−1∑

l2=0

a−1+k2∑

k3=k2

b−1+l2∑

l3=l2

ck3−k2,l3−l2 · dk2,l2 · e−
2πik2·ã·(l3−l2)·b̃

L Mk3ã · Tl3b̃ =
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In this chapter the matrices are regarded as periodic in rows and columns

and the factor e−
2πik2·ã·(l3−l2)·b̃

L is b-periodic in l3, so

a−1∑

k2=0

b−1∑

l2=0

a−1∑

k3=0

b−1∑

l3=0

ck3−k2,l3−l2 · dk2,l2 · e−
2πik2·ã·(l3−l2)·b̃

L Mk3ã · Tl3b̃ =

a−1∑

k3=0

b−1∑

l3=0

(
a−1∑

k2=0

b−1∑

l2=0

ck3−k2,l3−l2 · dk2,l2 · e−
2πik2·ã·(l3−l2)·b̃

L

)
Mk3ã · Tl3b̃

Let Ji be the Janssen matrix of Si. The time-frequency shifts are an orthog-

onal system, so for S3 =
a−1∑
k3=0

b−1∑
l3=0

Jk3,l3Mk3ãTl3b̃ we know

Jk3,l3 =
a−1∑

k2=0

b−1∑

l2=0

ck3−k2,l3−l2 · dk2,l2 · e−
2πik2·ã·(l3−l2)·b̃

L =

=
a−1∑

k2=0

b−1∑

l2=0

(J∗
2 )l2,k2 · (J∗

1 )l3−l2,k3−k2 · e
2πik2·ã·(l3−l2)·b̃

L =

=
(
J∗

2 ♮ L
a·b
J∗

1

)
l3,k3

.

2

Point 2 stresses the connection of the Janssen matrix to the spreading
function, see Section 2.3.2. In [43] Lemma 7.6.5 an analogue result was
proved for the continuous case and the spreading function.

3.2.6 The Walnut And Janssen Norms

In Sections 3.1.2.4 and 3.1.2.1 we have found two types of “small” matrices
(with b · a elements) which characterize Gabor-type matrices. In Section
3.1.1.4 we have stated that the calculation of the operator norm is numerically
not very efficient. So we will define new norms using the smaller matrices.
We will show that they are upper bounds for the operator norm. We will also
study the relationship between these norms. Note the definition of the mixed

norms in Section A.3.5.1 ‖A‖p,q =

(
m−1∑
j=0

(
n−1∑
i=0

|ai,j|p
) q

p

) 1
q

with a natural

extension to infinity.
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Definition 3.2.7 Let S be a Gabor-type matrix, B be its non-zero block
matrix and J be its Janssen matrix. Then, we define

‖S‖Wal =
∥∥BT

∥∥
∞,1

the Walnut-norm and
‖S‖Jan = ‖J‖1,1

the Janssen-norm.

Using Definition 3.1.3 we see that

‖S‖Wal =
∥∥BT

∥∥
∞,1

=
b−1∑

i=0

max
j=0,...,a−1

{|Bi,j|} =
b−1∑

i=0

max
j=0,...,a−1

{∣∣Si·b̃+j,j
∣∣}

and so the walnut norm takes the maxima of the side-diagonals and sums
them up.

As the matrices B and J are smaller than the Gabor-type matrix S, the
computation of the norms above is relatively simple. More precisely, the
Walnut norm, but also the Janssen norm can be calculated from the block
matrix see Theorem 3.2.28.

In Section 3.2.6.2 it will be shown that the norms above are bounds for
the operator norm, and that in the Gabor frame case they can be ordered as
follows:

‖S‖Op ≤ ‖S‖Wal ≤ ‖S‖Jan ≤ ‖S‖fro (3.10)

This means that the Walnut norm is the best approximation of the oper-
ator norm, and therefore it can be used as an efficient way to find a (close)
upper bound for it.

On the other hand, the Janssen matrix and norm give us some insight
on the behavior in the time-frequency plane For example in the case of ma-
trix approximation the Janssen representation gives some insight where in
the time-frequency plane the difference between original and approximation
matrix occurs, see Section 3.4.3.4. In Section 3.4.3, the numerical investiga-
tion of double preconditioning, all the algorithms use the block structure of
the frame matrix. In that section, the Walnut and Janssen norms are very
convenient as they can be calculated directly from the block matrix.

Regarding the Frobenius norm or equivalently the Frobenius inner prod-
uctMm,n forms a Hilbert space. Although it is not a very close approximation
for the operator norm, as can be seen e.g. in Section 3.4.3.2, the Hilbert space
property is very useful from the analytical point of view.

In summery, each one of the norms introduced above has its usefulness. As
we will work with finite-dimensional spaces, all norms have to be equivalent,
see the next section.
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3.2.6.1 The Connection Of The Janssen And Non-Zero Block Ma-
trix

In this section the non-zero block matrix and the Janssen matrix are inves-
tigated in more detail. Using Corollary 3.2.24 we know that these matrices
are connected. Even more, we can give a algorithm, how to switch between
the Janssen matrix and the non-zero block matrix:

Theorem 3.2.28 Let Bg,γ,a,b be the b × a associated non-zero block matrix
for g, γ, a, b, and Jg,γ,a,b the corresponding Janssen-matrix. Then

Fa ·Bt
g,γ,a,b = a · Jg,γ,a,b

‖B‖fro =
√
a ‖J‖fro

and therefore for the corresponding frame matrix S

‖S‖fro =
√
L ‖J‖fro

Proof:

Jk,l =
L

ab
〈γ,MkãTlb̃g〉 =

1

a
b̃ (Vgγ) (lb̃, kã) =

=
1

a
b̃ ̂(γ · Tlb̃g) (kã)

Let us look at the l-th row of B B(l) ∈ Ca with B
(l)
j = Bl,j.

ˆb(l)k
(3.3)
= b̃

̂(
ã−1∑

p=0

Tap (Tlb̃g · γ)
)

k

Poisson
= b̃ · ̂(Tlb̃g · γ)kã

Note that we start with a Fourier transform in Ca but end up in Cn in this
equation.

=⇒ a · Jk,l = ˆb(l)k

‖B‖fro =

√√√√
b−1∑

i=0

a−1∑

j=0

|Bi,j|2 =

√√√√
b−1∑

i=0

‖b(i)‖2
=

=

√√√√
b−1∑

i=0

1

a

∥∥∥b̂(i)
∥∥∥

2

=

√√√√
b−1∑

i=0

1

a
·
a−1∑

j=0

a2 |Ji,j|2 =
√
a · ‖J‖fro
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As S consists of L
a

rotated versions of the n×a block-matrix and this larger
block-matrix has the same Frobenius norm as the non-zero block matrix,
clearly

‖S‖fro =

√
L

a
· ‖B‖fro (3.11)

and therefore

‖S‖fro =

√
L√
a
· √a · ‖J‖fro =

√
L · ‖J‖fro

2

3.2.6.2 Norm Equivalence

In this section we will investigate the norm equivalences for the norm in-
troduced above. For a better overview we will split the results in several
statements and propositions.

Lemma 3.2.29 1.
‖S‖Op ≤ ‖S‖Jan

2.
‖S‖Wal ≤ ‖S‖Jan

3.
‖S‖fro ≤

√
L ‖S‖Jan

Proof: We know from Corollary 3.2.24 that we can represent the frame
operator as sum of time and frequency shifts and so for every norm

‖Sg,γ‖ =
L

a · b

∥∥∥∥∥

b−1∑

l=0

a−1∑

k=0

cl,kMlãTkb̃

∥∥∥∥∥ ≤

≤ L

a · b
b−1∑

l=0

a−1∑

k=0

|cl,k| ‖MlãTkb̃‖ =

=
b−1∑

l=0

a−1∑

k=0

|Jl,k| ‖MlãTkb̃‖

We know from Proposition 3.2.3 that ‖MlãTkb̃‖Op = 1 and ‖MlãTkb̃‖fro =
√
L

points 1) and 3) are proved.
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Point 2) is also true, as we can show that ‖MlãTkb̃‖Wal = 1 because this
matrix has only one non-zero side-diagonal, where the entries have all norm
1.

2

Lemma 3.2.30
‖S‖Op ≤ ‖S‖Wal

Proof:
‖S‖Op = max

x:‖x‖2=1
{‖Sx‖2}

Let bp in Cn with (bp)j = B
p,j mod a

. We know from (3.4) that

‖Sx‖2 =

∥∥∥∥∥

b−1∑

p=0

T−pb̃x · bp
∥∥∥∥∥

2

≤

≤
b−1∑

p=0

∥∥T−pb̃x · bp
∥∥

2
≤

b−1∑

p=0

∥∥T−pb̃x
∥∥

2
· ‖bp‖∞ =

=
b−1∑

p=0

‖x‖2 · max
j=0,...,a−1

{
B
p,j mod a

}
=

= ‖x‖2 ·
b−1∑

p=0

max
j=0,...,a−1

{
B
p,j mod a

}

︸ ︷︷ ︸
‖S‖Wal

2

Lemma 3.2.31
‖J‖fro ≤ ‖J‖1,1 ≤

√
a · b ‖J‖fro

Proof: This is just an analogous property to the norm equivalence for ‖.‖2

and ‖.‖1 in Cn: ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2. 2

Proposition 3.2.32
√

L

a · b ‖S‖Jan ≤ ‖S‖fro ≤
√
L · ‖S‖Jan
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Proof: We know the second part from Lemma 3.2.29.

‖S‖Jan = ‖J‖1,1 ≤
√
a · b ‖J‖fro

Lem.3.2.28
=

√
a · b
L

‖S‖fro
2

So if red = L
a·b ≥ 1, what we always need for the used Gabor system to be

a frame, then ‖S‖Jan ≤ ‖S‖fro and so the walnut norm approximates the
operator norm better.

Lemma 3.2.33

1√
a
‖B‖fro ≤ ‖B‖∞,1 ≤

√
b ‖B‖fro

Proof:

‖B‖∞,1 =
b−1∑

i=0

max
j=0,...,a−1

{|Bi,j|} = (∗)

Clearly

max
j=0,...,a−1

{|Bi,j|} ≤

√√√√
a−1∑

j=0

|Bi,j|2

and

(∗) ≤
b−1∑

i=0

√√√√
a−1∑

j=0

|Bi,j|2 ≤
√
b

√√√√
b−1∑

i=0

a−1∑

j=0

|Bi,j|2

On the other hand
√√√√

a−1∑

j=0

|Bi,j|2 ≤
√
a · max

j=0,...,a−1
{|Bi,j|} =⇒

√√√√
b−1∑

i=0

a−1∑

j=0

|Bi,j|2 ≤
b−1∑

i=0

√√√√
a−1∑

j=0

|Bi,j|2 ≤

≤
b−1∑

i=0

√
a · max

j=0,...,a−1
{|Bi,j|} =

√
a · (∗)

2

With Theorem 3.2.28 we get immediately
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Proposition 3.2.34

√
L

a · b ‖S‖Wal ≤ ‖S‖fro ≤
√
L ‖S‖Wal .

Combining Lemma 3.2.29, Proposition 3.2.32, Lemma 3.2.33 and Theo-
rem 3.2.28 we get

Proposition 3.2.35

1√
a · b

‖S‖Jan ≤ ‖S‖Wal ≤ ‖S‖Jan

So in combination we get Equation 3.10:

Theorem 3.2.36

‖S‖Op ≤ ‖S‖Wal ≤ ‖S‖Jan ≤ ‖S‖fro

3.3 Some Thoughts On ’Numerical Algorithms

For Discrete Gabor Expansions’ [122]

In [44] chapter 8 [122] T. Strohmer has written a celebrated article about
”numerical algorithms for discrete Gabor expansions”, which introduced an
efficient algorithm for inverting the Gabor frame matrix. It was also the
starting point for the investigation of the block matrices and the Fourier
matrix transformation in Section 3.2, and Double Preconditioning for Gabor
frames in Section 3.4. Most of the work in this chapter is based on this
article, which is a very good entry point to the theory of finite dimensional
Gabor analysis.

In this article there are some small errors, which can be easily eradicated.
This is done in this section.

The translation and modulation are used here in this section only as in
this article, so (

T
(L)
k f

)
l
= f(l+k)modL

and
(Mpf)l = e−2πipl/Lfl = ωplL fl

We also use other conventions of this article, like a ·N = L and b ·M = L.
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3.3.1 ad [122] 8.3.4.

We will cite the original wording from [122] between horizontal lines, using
the original numbering.

Proposition 8.3.4 The matrix G can be factorized into a block diagonal
matrix DG with M rectangular blocks Wk of size b×N via

DG = P ∗
M,LG (IN ⊗ F ∗

M)P ∗
N,MN

where
DG = diag (W0, . . . ,WM−1)

with
(Wk)mn =

√
Mg (k +mM − na)

for m = 0, . . . , b− 1 ,n = 0, . . . , N − 1 and k = 0, . . . ,M − 1.
The proof is based on the fact that (G (IN ⊗ F ∗

M))m,n =
√
Mg (n− aM),

if |m− n|modM = 0 and 0 else, [.....]

’The fact’ is not true, it should be

(G (IN ⊗ F ∗
M))m,n =

=

{ √
Mg

(
m−

⌊
n
M

⌋
a
)

if |m− n|modM = 0
0 otherwise

But the proposition stays completely true, except that DG should rather
be DG = P ∗

M,LG (IN ⊗ F ∗
M)PN,MN .

Proof.:

G =


 g0,0 g1,0 . . . gm,n . . .




and so
Gp,q = ωq2·pM · g(p− q1a)

where q1 = ⌊ q
M
⌋ and q2 = q mod M . Let l1 = ⌊ l

M
⌋ and l2 = l mod M .

(IN ⊗ F ∗
M)q,l = δq1l1 ·

1√
M

· ω−l2q2
M

And so

(G (IN ⊗ F ∗
M))p,l =

MN−1∑

q=0

Gp,q · (IN ⊗ F ∗
M)q,l =

166



=
N−1∑

q1=0

M−1∑

q2=0

ωq2·pM · g(p− q1a)δq1l1 ·
1√
M

· ω−l2q2
M =

=
1√
M

· g(p− l1a)
M−1∑

q2=0

ω
q2·(p−l2)
M

︸ ︷︷ ︸
=Mδp2l2

= δp2l2
√
Mg(p− l1a)

with p1 = ⌊ p
M
⌋ and p2 = p mod M . With this property it is clear, that

G (IN ⊗ F ∗
M) is a matrix with b diagonal M ×M -blocks and so the proof of

8.3.1 can be used analogously.

G (IN ⊗ F ∗
M) =

M−1∑

k=0

Wk︸︷︷︸
b×N

⊗E(M)
k with

(Wk)m,n = (G (IN ⊗ F ∗
M))k+m·M,k+n·M =

= δkk
√
Mg((k +m ·M) − na)

2

3.3.2 ad [122] 8.4.1.

Proposition 8.4.1 Given a function g of length L and lattice parameters a,
b. Denote the greatest common divisor (gcd) of a and M by c. Let Wk be
the submatrices of the block diagonal factorization of G stated in proposition
8.3.4, i.e. (Wk)mn = Mg (k +mM − na). Then the Wk satisfy following
relation:

Πq
bWkΠ

l
N = W(k+la)modM(8.4.1)

with q = ⌊ lab
L
⌋. Thus there are (up to permutations) c different submatrices

Wk for k = 0,M − 1.

There is a small typing error as (Wk)mn =
√
Mg (k +mM − na). The

calculation of q is not right and in the proof the property (k+ la) mod M =
k + (la) mod M is used, which is not true.

Let q =
(
−
⌊
kb+lab
L

⌋
mod b

)
, then again the proposition is true, although

the q now also depends on the k.
So it should finally be:

Proposition 8.4.1’ Given a function g of length L and lattice parameters
a, b. Denote the greatest common divisor (gcd) of a and M by c. Let Wk be
the submatrices of the block diagonal factorization of G stated in proposition
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8.3.4, i.e. (Wk)mn =
√
Mg (k +mM − na). Then the Wk satisfy following

relation:
Πq
bWkΠ

l
N = W(k+la)modM(8.4.1)

with q = −
⌊
k+la
M

⌋
mod b. Thus there are (up to permutations) c different

submatrices Wk for k = 0,M − 1.

Proof.:
Choose a q such that for k = 0, . . . ,M−1, m = 0, . . . , b, n = 0, . . . , N−1

and l = 0, . . . , N − 1

(
Πq
bWkΠ

l
N

)
m,n

=
(
W(k+la)modM

)
m,n

⇐⇒ (Wk)m+q,n−l =
(
W(k+la)modM

)
m,n

⇐⇒ g (k + (m+ q)M − (n− l) a) =

= g ((k + la) mod M +mM − na)

This is valid for all g if and only if

k + (m+ q)M − (n− l) a ≡L (k + la) mod M +mM − na

⇐⇒ k + la+ qM ≡L (k + la) mod M

⇐⇒
⌊
k + la

M

⌋
M + qM ≡L 0

⇐⇒
⌊
k + la

M

⌋
+ q ≡b 0

⇐⇒ q = −
⌊
k + la

M

⌋
mod b

2

3.3.3 ad [122] 8.4.2.

Proposition 8.4.2 Given a function g of length L and lattice parameters
a, b. Denote d = gcd(b,N). Then Wk is a block circulant matrix with d
generating blocks of size b

d
× N

d
for k = 0, . . . ,M − 1.

For this proposition the following proof might be easier to follow:
Proof.:

(Wk)m,n = (Wk)(m+ b
d) mod b,(n+N

d ) mod N
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if and only if
g (k +mM − na) =

= g

(
k +

((
m+

b

d

)
mod b

)
M −

((
n+

N

d

)
mod N

)
a

)

This is true for all g if and only if

mM − na =
=
((
m+ b

d

)
mod b

)
M −

((
n+ N

d

)
mod N

)
a

(3.12)

We know that for all m1 = 0, . . . , L− 1

m1 = ⌊m1

b
⌋ · b+ (m1 mod b)

=⇒ m1 ·M = ⌊m1

b
⌋ · b ·M︸ ︷︷ ︸

=L

+ (m1 mod b) ·M

=⇒ m1 ·M ≡L (m1 mod b) ·M
Therefore, and with an equivalent argument for a and N , (3.12) is true if
and only if

mM − na ≡L

(
m+

b

d

)
M −

(
n+

N

d

)
a

⇐⇒ 0 ≡L
b

d
M − N

d
a =

L

d
− L

d
2

3.4 Double Preconditioning For Gabor Frames

An important question, which we will investigate in this section, is how to
find a Gabor analysis-synthesis system with perfect (or depending on the
application a satisfactorily accurate) reconstruction in a numerical efficient
way. Basic Gabor frame theory, see Chapter 2.1.2, tells us, that when using
the canonical dual Gabor atom g̃ = S−1g, perfect reconstruction is always
achieved, if the frame-operator S (cf. Section 1.1) is invertible. Thus the
dual atom is obtained by solving the equation Sg̃ = g, and to this end the
frame algorithm, see Proposition 1.2.13, can be applied. This is a Neumann
algorithm, see Figure A.1, with a relaxation parameter. If the inequality
‖Id− λS‖Op < 1 holds, then this algorithm converges, S is invertible and
the algorithm approximates the dual Gabor atom g̃.
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Instead of finding the canonical dual, other dual windows can be searched,
and sometimes they can be found in a numerically more efficient way as
demonstrated in [130]. But in general, the computation of a dual window
can be very complicated and numerically inefficient. The Zak transform,
cf. [136] [73], is extensively used for theoretical purposes, but its use for
numerical calculations is limited [122]. The celebrated paper from Wexler
and Raz [131] gives an important bi-orthogonality relation, which reduces the
problem to a simple linear system. In order to find a very efficient algorithm,
Qiu and Feichtinger use the sparse structure of the frame operator [103],
which leads them to an algorithm for the inversion of the frame matrix with
O(abn) operations, where n is the signal length and a, b are the time and
frequency shift parameters.

In this section another well known tool to speed up the convergence rate,
namely preconditioning, cf. Section 3.1.1.3, is used to further improve the
numerical efficiency of this calculation. In our proposed method, we use a
special invertible preconditioning matrix P , which makes ‖Id− PS‖ small.
Then, instead of Sg̃ = g, the equation PSg̃ = Pg is solved. So the matrix
M = P · S is intended to be an approximation of the identity. If M is a rea-
sonably good approximation, e.g. ‖Id−M‖ < 0.1, then only a few iterations
are needed in order to find the true dual atom (up to precision limitations).
Moreover, if M is a very good approximation, e.g., ‖Id−M‖ ≪ 0.1, then the
preconditioning matrix P can already be considered a good approximation
of the inverse matrix of S.

The aim of this section is to investigate the idea of double preconditioning
of the frame operator S. This method was already suggested as an idea
in the very last paragraphs of [122] and [124]. In this section the double
preconditioning method will be fully developed, examined and backed up
with systematic experimental numerical data. This scheme relies, again,
on the very special structure of the Gabor frame operator S, it is an a
block-circulant matrix with b diagonal blocks, refer also to Section 3.2.5.
From Theorem 3.1.9 we know, that there are two extreme cases for this nice
structure. (1) If the frequency sampling is dense enough and g has support
inside an interval I, with the length ≤ b, then S is a diagonal matrix. (2)
If the time sampling is dense enough and ĝ has compact support on an
interval with length ≤ a, then Ŝ is diagonal and therefore S is circulant.
In both cases it is easy to find the inverse matrix. If the window g is not
supported on I, then S becomes non-diagonal. However, if S is strictly
diagonal dominated it is well known for D = (di,j), with di,j = δi,jsi,j i.e.
the best approximation of S by diagonal matrices, S−1 can be approximated
well by using the preconditioning matrix P = D−1, see the Jacobi method
in Section 3.1.1.2. An analogous property holds if Ŝ is strictly diagonal
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dominated, obtaining a circulant matrix as preconditioning matrix. When
using these two preconditioning matrices at the same time, hence the name
double preconditioning, we will get a new method.

The main observation is the fact that the use of double preconditioning
often leads to better results than the use of single preconditioning. Moreover,
in the cases where this is not true, the difference is in general not significant.
This behavior is observed in numerical experiments. More precisely, we will
first study single cases and then proceed with systematic experiments, where
the efficiency of the double preconditioning method is investigated for differ-
ent windows.

In Section 3.4.1 we will review and extend the use of diagonal and cir-
culant matrices as preconditioners for the Gabor frame operator. In Section
3.4.2 we will explain how to combine these preconditioners to invert the frame
matrix S, and finally, in Section 3.4.3, we will demonstrate the efficiency of
this idea.

3.4.1 Single Preconditioning Of The Gabor Frame Op-
erator

We propose two preconditioning methods. In the first we consider the best
approximation of S with diagonal matrices, and approximate S−1 by invert-
ing its diagonal approximation. The second method is based on the same
idea but considering circulant matrices.

3.4.1.1 Diagonal Matrices

The inverse of the diagonal part of the frame operator is used as a precondi-
tioning matrix, depicted in Figure 3.2.

P = D(S)−1

Figure 3.2: The diagonal preconditioning matrix

For every square matrix A we can find a diagonal matrix just by ”cutting
out” the diagonal part of A, to shorten the notation we use D(A) instead of
diag(A):

Definition 3.4.1 Let A = (ai,j)i,j be a square n×n matrix, then let D(A) =

(di,j)i,j with di,j =

{
ai,i i = j
0 otherwise

the diagonal part of A.
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The set of all diagonal n× n matrices forms a matrix algebra. This algebra
is spanned by the matrices Ek with Ek = D(δk). They clearly form an
orthonormal basis (ONB) (with the Frobenius inner product) and therefore
D : A 7→ D(A) is an orthogonal projection. This means that the best
approximation of A in ‖.‖HS by diagonal matrices is exactly D(A).

The diagonal part of a Gabor-type matrix clearly is block-circulant, and
therefore also of Gabor-type. This allows us to use the efficient block-matrix
algorithms from [104] refer also to Section 3.2.5.2.

If the window g is compactly supported on an interval with a length
smaller than b̃ then Sg,g is a diagonal matrix, see Section 3.1.2.3. In this
case the inverse matrix is very easy to calculate by just taking the reciprocal
value of the diagonal entries, which are always non-zero for a Gabor frame
matrix, cf. Lemma 3.1.6.

Even in the case where the window g is not compactly supported, but S
is strictly diagonal dominant, S−1 is well approximated by D−1. It is known
[121] that, if the matrix A is strictly diagonal dominant, i.e.

max
i=0,...,n−1

n−1∑

k=0,k 6=i

|aik|
|aii|

< 1,

then the Jacobi algorithm, xm = D−1 (D − A)xm−1 + D−1b, converges for
every starting vector x0 to A−1b, see Section 3.1.1.2. The efficiency of the
Jacobi algorithm comes from the fact that it is easy to find the diagonal part
of a matrix and to invert it. As can be seen from the above formula the
Jacobi algorithm is equivalent to preconditioning with D(S)−1.

The use of block-matrices leads to very efficient algorithms. Motivated
by this fact, we would like to find criteria for the convergence of the Jacobi
algorithm for non-zero block matrices, which means that by just using the di-
agonal preconditioning matrix and an iterative scheme we will get the inverse
matrix and the canonical dual window respectively.

Corollary 3.4.1 Let S be a Gabor-type matrix and B be the associated non-
zero block matrix. Then the following conditions are sufficient for the Jacobi-
algorithm to converge

1. max
i=0,...,a−1

{
b−1∑
k=1

|Bk,i−k·b̃|
B0,i

}
< 1

2. max
j=0,...,a−1

{
b−1∑
k=1

|Bk,j|
B0,j+k·b̃

}
< 1

3.
a−1∑
i=0

b−1∑
k=1

(
|Bk,i−k·b̃|

B0,i

)2

< a
L
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4.
a−1∑
j=0

b−1∑
k=1

(
|Bk,j|
B0,j+k·b̃

)2

< a
L

Proof: We are just going to insert Corollary 3.1.5

Si,j = Xb̃(i− j)B⌊ i−j

b̃
⌋,j

into Theorem 3.1.3.
For the Jacobi algorithm the quotient

|Si,j |
|Si,i| is important. Si,j 6= 0 only for

i, j such that i− j mod b̃ = 0. Let i−j
b̃

= k. Then

|Si,j|
|Si,i|

=

∣∣Bk,i−k·b̃
∣∣

|B0,i|
=

|Bk,j|∣∣B0,j+k·b̃
∣∣

Notice that the first column of B is always positive, as the diagonal of
the Gabor frame operator has this property for frames, see Lemma 3.1.6.

So for point 1

max
i=0,...,L−1

∑

j=0,...,L−1

j 6=i

|Si,j|
|Si,i|

= max
i=0,...,a−1

∑

k=1,...,b−1

∣∣Bk,i−k·b̃
∣∣

B0,i

< 1

Point 2 can be proved in an analogous way.
For Point 3

∑

i,j=0,...,L−1

j 6=i

( |Si,j|
|Si,i|

)2

=
∑

i=0,...,L−1

∑

k=1,...,b−1

(∣∣Bk,i−k·b̃
∣∣

|B0,i|

)2

=

= ã
∑

i=0,...,a−1

∑

k=1,...,b−1

(∣∣Bk,i−k·b̃
∣∣

B0,i

)2

< ã · a
L

= 1

Point 4 can be proved in an analogous way.
2

3.4.1.2 Excursus: A Criterion For Gabor Frames

Not directly connected to our main question of finding an approximate dual
window, the above mentioned algorithm nevertheless gives us some sufficient
conditions for a Gabor system to generate a frame by using known criteria
for the convergence of the Jacobi algorithm.
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Corollary 3.4.2 Sufficient conditions for a Gabor triple (g, a, b) to generate
a Gabor frame are:

1.

∣∣∣∣
ã−1∑
k=0

g (i− ak) g
(
i− jb̃− ak

)∣∣∣∣ <
1
b−1

ã−1∑
k=0

|g (i− ak)|2

for all i = 0, . . . , a− 1 and j = 1, . . . , b− 1.

2.
∣∣∣∣
ã−1∑
k=0

g
(
j − ib̃ − ak

)
g (j − ak)

∣∣∣∣ <
1

b−1

ã−1∑
k=0

∣∣∣g
(
j + ib̃ − ak

)∣∣∣
2

for all j = 0, . . . , a− 1 and i = 1, . . . , b− 1.

Proof: Using Equation 3.3 we know that

Bi,j = b̃
ã−1∑

l=0

g
(
ib̃+ j − al

)
g (j − al) .

Under the assumption of point (1), we know that

∣∣Bk,i−k·b̃
∣∣

B0,i

=

b̃

∣∣∣∣
ã−1∑
l=0

g
(
kb̃+ i− k · b̃− al

)
g
(
i− k · b̃− al

))

b̃

∣∣∣∣
ã−1∑
l=0

g (i− al) g (i− al)

) =

=

∣∣∣∣
ã−1∑
l=0

g (i− al) g
(
i− k · b̃− al

)∣∣∣∣
ã−1∑
l=0

|g (i− al)|2
<

1

b− 1

And therefore

max
i=0,...,a−1

{
b−1∑

k=1

∣∣Bk,i−k·b̃
∣∣

B0,i

}
< max

i=0,...,a−1

{
b−1∑

k=1

1

b− 1

}
< 1

Therefore with Corollary 3.4.1 the Jacobi-algorithm is converging for S,
therefore S is invertible, and therefore (g, a, b) forms a frame.

Point (2) can be shown by using a very similar argument. 2

A similar result was stated in a corollary in [103], which is amended and
expanded by this result.
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P = C(S)−1

Figure 3.3: The circulant preconditioning matrix

3.4.1.3 Circulant Matrices

Instead of considering diagonal matrices we can approximate S by projecting
on the algebra of circulant matrices and using the inverse as preconditioning
matrix.

Definition 3.4.2 Let C(S) = (ci,j)i,j with ci,j = 1
L

L−1∑
k=0

Sk+(j−i),k.

The matrix C(S) is clearly a circulant matrix. It even is the best approx-
imation of S by circulant matrices, as stated in the next result:

Corollary 3.4.3 Let A be a matrix, then the best approximation (regarding
the Frobenius norm) of A on the circulant matrices is to take the mean value
of the side diagonals as entries of the circulant matrix.

C(A) =
∑

k

(
1

L

L−1∑

j=0

Aj+k,j

)
Πk
L (3.13)

Proof: The circulant matrices are spanned by the Πk
L, see Proposition 3.2.6.

We know from Proposition 3.2.3 that the matrices
Πk

L√
L

form an orthonormal
system, so

A =
∑

k

〈
A,

1√
L
· Πk

L

〉

HS

1√
L
· Πk

L =
1

L

∑

k

〈
A,Πk

L

〉
HS

· Πk
L

〈
A,Πk

L

〉
HS

=
L−1∑

i,j=0

Ai,j · δi,j+k =
L−1∑

j=0

Aj+k,j

2

Due to properties of the Matrix Fourier Transformation, see Section 3.2.3
C(S) can be calculated by using

C(S) = F−1 (D (F (S))) = Fn · [D (Fn · S · F∗
n)] · F∗

n
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which implies that

C(S)−1 = F∗
n · [D (Fn · S · F∗

n)]
−1 · Fn

Therefore the computation of C(S)−1 can be done in a very efficient way by
using the FFT-algorithm.

3.4.2 Double Preconditioning Of The Gabor Frame
Operator

The main result of this Section is the double-preconditioning method. In
a rather natural way, as seen in Figure 3.4, we will combine the two sin-
gle preconditioning methods introduced above. More precisely, after an ap-
proximation with diagonal matrices and inversion we do an approximation
with circulant matrices. The double preconditioning algorithm can be im-
plemented very efficiently using the block multiplication algorithm of [103],
since, if S is a Gabor-type matrix, then C(S) and D(S) are also Gabor-type
matrices and hence can also be represented by b× a block matrices.

P = C
(
D (S)−1 · S

)−1
D(S)−1

Figure 3.4: The double preconditioning matrix

For a basic description of the algorithm see figure 3.5. In this figure
the subscript ’block’ indicates a calculation on the block matrix level, which
makes this algorithm very efficient. Let us explain some of the expressions:

1. block(g, a, b) stands for the calculation of the non-zero block matrix
using Equation 3.3.

2. diagblock(M) stands for the calculation of the block matrix of D(M),
which is done by calculating the block matrix of S and setting all rows
but the first to zero, as this row corresponds to the main diagonal of
S.

3. circblock(M) is the calculation of the block-matrix of S(M) which has
constant columns with the mean value of the columns of block(g, a, b)
as entries.
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4. invblock(M) is the calculation of M−1 on the block level.

(a) For diagonal M and therefore block matrices with non-zero entries
in the first row only, this is done by using the reciprocal values of
the entries in the first row.

(b) For circulant M and therefore block matrices with constant rows,
we use the first row of the block matrix, apply the inverse FFT
to it, take the reciprocal values and apply the FFT. This is the
inverse, because let M be a circulant matrix, then

M =
∑

k

ck · Tk =⇒ F−1(M) =
∑

k

ck ·M−k

F−1(M) is a diagonal matrix with diagonal entries L
(
F−1
L c
)
k

, see

Proposition 3.2.8. Therefore (F−1(M))
−1

has the diagonal entries
1

L·(d̂)
k

and so

M−1 =
∑

k

(
FL

(
1(

F−1
L c
)
))

k

Tk

5. •block is the matrix multiplication on block matrix level using Theorem
3.2.26.

In the subsequent two sections we will look at two special properties of
our algorithm, how to do the second preconditioning step and in which order
to multiply the matrices. We will justify, why we have chosen this particular
setting.

For an implementation in MATLAB, see Section B.4.

3.4.2.1 Choice of method

Roughly speaking, the double preconditioning method consists of two single
preconditioning steps. There are two possibilities, either, to use the original
matrix S for every step or to use the result of the first step in the second
one. More precisely:

(Method 1) C (D(S)−1S)
−1
D(S)−1 or the more naive

(Method 2) C(S)−1D(S)−1

The first method seems to be more sensible, as each single preconditioning
step uses projections. Even more, it also provides the following property: if S
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- Parameter:

the window g, the lattice parameter a,b

- Initialization:

B = block(g, a, b)

- Preconditioning :

• (first preconditioning)

P1 = diagblock (B)

S1 = invblock(P1) •block B

• (second preconditioning)

P2 = circblock (S1)

S2 = invblock(P2) •block S1

Figure 3.5: The double preconditioning algorithm

is diagonal, after the first step we will reach identity and this will stay identity
in the second step (up to the machine precision). Also, if S is circulant, after
the first step we still have a circulant matrix as the multiplication of an arbi-
trary matrix A and a diagonal matrix D is D ·A = (di,i · ai,j)i,j. So for the cir-

culant matrix C = (c(i− j))i,j we get (D−1(C) · C)i,j = (c(0)−1 · c(i− j))i,j.
Hence the second step leads to identity again. Note that the Gabor-type
structure also is preserved with this method.

On the other hand, the second method does not enjoy aforementioned
property in the case of circulant matrices. For example take n = 6, a = 1,
b = 6 and g = (1, 2, 3, 4, 5, 6). Then S is a circulant matrix, but the double
preconditioning deteriorate the approximation, as

∥∥C(S)−1D(S)−1S − I
∥∥
Wal

= 0.994505.

This is a big disadvantage, since, for these simple matrices, the method should
give satisfactory results.

So we always use the first method. In order to simplify the notation we
will use C(S) to denote C(D(S)−1S).
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3.4.2.2 Order of preconditioning matrices

If the preconditioning matrix is diagonal, it makes no difference if it is
multiplied to S from the left or from the right. As S is self-adjoint (see
Theorem 1.1.3), D = D(S) is too, and therefore, (D · A)∗ = A · D and
(D · A− I)∗ = A ·D − I. Finally

‖D · A− I‖ = ‖A ·D − I‖

So the norm of the difference to the identity is equal for

1. D(S)−1S or

2. SD(S)−1

The same property holds for single preconditioning with circulant matrices.
In the case of double-preconditioning, the influence of the order in the

multiplication has still to be investigated. Numerical experiments (see Sec-
tion 3.4.3.2) suggest that also for the double preconditioning method the
order is not of relevant importance. In this chapter, unless specified other-
wise, the order C(S)−1D(S)−1S will always be used.

3.4.2.3 Algorithm for an approximate dual

The double preconditioning method has two applications:

1. It can be used to speed up the convergence of an iterative scheme, here
the Neumann algorithm, using S2 in Figure 3.5 to get the canonical
dual (up to a certain, predetermined error).

2. In order to get a real fast algorithm for the calculation of an approxi-
mate dual we propose the following method: The double precondition-
ing matrix itself, P−1

2 in Figure 3.5, is used as an approximation of
the inverse Gabor frame operator. Then the approximated dual can be
calculated as

g̃(ap) = P−1
2 g =

(
C(S)−1D(S)−1

)
g .

This can be used for example for adaptive Gabor frames in real time,
where the computation of the canonical dual window needs to be done
repeatedly.
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3.4.3 Numerical Results

3.4.3.1 The shapes of the approximated duals

In this first, introductory example we will use the double preconditioning
matrix to get an approximate dual (as mentioned above) to see

1. that the different single preconditioning steps can capture certain prop-
erties of the dual window but fail to do so for others

2. the double preconditioning leads to a good approximation of the dual.

This experiment was done with a Gaussian window with n = 640, a = 20
and b = 20. In this case it is interesting to see the difference between the
diagonal and the circulant ’dual’ windows. We will use the names diagonal
dual, circulant dual and double dual for the window we get when we apply
the preconditioning matrix to the original window. Of course this does not
have to be a real dual. See Figure 3.6.

The first seems similar to the canonical dual ’away from the center’ but
not near the center, while the second window just has the opposite property.
Opposed to these ’single duals’ the ’double dual’ seems to combine these
properties to become very similar to the true dual everywhere.

3.4.3.2 Order

We can now try to investigate whether the order has any influence. In this
case we use a Gaussian window, n = 144, a = 6 and b = 9 and we look at
the norms of the difference to identity:

method \ norm Operator Walnut Janssen Frobenius
D−1S 0.1226 0.1232 0.1234 1.0397
SD−1 0.1226 0.1232 0.1234 1.0397

D− 1
2SD− 1

2 0.1226 0.1232 0.1233 1.0397
C−1S 0.0038 0.0045 0.0046 0.0324
SC−1 0.0038 0.0045 0.0046 0.0324

C−1D−1S 0.0006 0.0007 0.0008 0.0048
D−1C−1S 0.0006 0.0007 0.0009 0.0048
C−1SD−1 0.0006 0.0007 0.0009 0.0048
D−1SC−1 0.0006 0.0008 0.0009 0.0048
SC−1D−1 0.0006 0.0007 0.0009 0.0048
SD−1C−1 0.0006 0.0007 0.0008 0.0048

We see in this case that the order is irrelevant. Also other experiments
lead the authors to believe, that the order is not relevant. This has to be
investigated further.
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Figure 3.6: Windows: Top: the full original window; Mid left: the true
canonical dual window, Mid right: ’diagonal dual’, bottom left: ’circulant
dual’, bottom right: ’double dual’.

In this experiment we also see a good example of the norm inequality
(3.10).

3.4.3.3 Iteration

Instead of using the preconditioning matrix as approximation of the inverse,
we can iterate this scheme using the Neumann algorithm.

Let us look at an example with a Gaussian window, n = 144, a = 12
and b = 9. See Figure 3.7. We look at the preconditioning steps and the
frame algorithm with optimal relaxation parameter. The calculation of the
frame bound was done beforehand and so the results should be comparable
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to algorithm, which avoid this costly calculation.

1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

fr
ob

en
iu

s 
no

rm
 o

f d
iff

er
en

ce
 o

f s
ub

se
qu

en
t s

te
ps

frame algorithm
diagonal preconditioning
circulant preconditioning
double preconditioning

Figure 3.7: Convergence with iteration: Relative difference of iteration steps.

In this figure we see that the results of the circulant preconditioning step
is nearly as bad as those of the frame algorithm. As the the sampling of the
time axis is quite ’wide’, it could be expected that circulant preconditioning
is not very good. But still the double preconditioning brings an improvement
compared to the single preconditioning with diagonal matrices.

3.4.3.4 The Janssen representation

To investigate the time-frequency plane let us look at the Janssen coefficients
of the involved matrices. See Figure 3.8, where we have used a Gaussian
window with n = 144, a = 12 and b = 9. Note that these are centered
pictures. This means that the entry of the matrix J1,1 is at the center of the
picture as it corresponds to no time or frequency shift.

In the top left picture we see the time-frequency spread of the difference
of identity and the original frame operator, I − S. It is clearly neither di-
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Figure 3.8: Time-frequency spread of differences to identity (Centered
graphs)

agonal nor circulant, as diagonal matrices, which are linear combinations of
modulations, would only have non-zero coefficients in the first row, whereas
circulant matrices are non-zero only in the first column.

In the top right picture we see I −D−1S in the Janssen representation.
The first column is zero, as the diagonal part was canceled out, but some
other parts remain. An analogous property is valid for the circulant precon-
ditioning.

For the double preconditioning method we see that in this case the Janssen
norm would be very small. We further notice that the coefficients around the
center, ’near the diagonal and circulant case’ have been approximated well.
The error occurs ’far from the center’.

So the Janssen representation gives us some insight on where in the time-
frequency plane the coefficients of the difference to identity is high. As the
Janssen norm just sums up the absolute value of these coefficients and is an
upper bound for the operator norm, these gives us some insight on the error
of the approximation in the time-frequency plane.
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3.4.3.5 Higher Dimensional Double Preconditioning

For this 2D example, see Figure 3.9, we use a separable window, the tensor
product g⊗g. We use a Gaussian 1D window g with n = 288, a = 12, b = 18,
so the redundancy is red = 1.3. Here we do not get perfect reconstruction,
but the reconstruction with the double dual is clearly much better than
with the other two approximate duals. This can also be seen in the norm
of the difference ‖Id− P−1 · S‖Op = 0.1796, 0.0914, 0.0300 for the diagonal,
circulant and double preconditioning case respectively.

For the calculation of the canonical dual with an iterative scheme 0.441s
was needed, the ’double dual’ needed only 0.060s on a MS Windows work-
station with a Pentium III (937 MHz).

Figure 3.9: 2D Reconstruction: Top left: the original image, top right: re-
construction with ’diagonal dual’, bottom left: with ’circulant dual’, bottom
right: with ’double dual’.
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3.4.3.6 Tests with Hanning window

For this experiment a zero-padded Hanning window was used as window.
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Figure 3.10: Top: The shape of the Hanning window. Bottom: Amplitude
[dB] (left) and Phase (right) spectrum of a Hanning window

The length n of the signal space was randomly chosen between 1 and
300. Out of all divisors of n the length of the Hanning window wsupp was
chosen, as well as a and b. Because we are interested in Gabor frames, we
have restricted our parameters to a ≤ wsupp and a · b ≤ n. The parameters
were randomized one thousand times. Some results can be found in Table
3.1. Note that this table is not ordered and sums up interesting results, not
representing the statistics, so e.g. the cases are taken out, where we have no
frame or the matrix clearly is diagonal due to the support criteria.

We use the terms Diagonal Norm for ‖D−1S − Id‖, Circulant Norm for
‖C−1S − Id‖, calling both of them Single Norms, and Double Norm for

∥∥D−1C−1S − Id
∥∥ .

The choice of the particular norm used depends on the context. Here in
Table 3.1 the operator norm has been used, as this experiment was intended

185



n redundancy Diagonal Norm Circulant Norm Double Norm
688 8 13.375 2.92104e-008 2.67309e-008
891 3.66667 0.698704 0.00209154 0.00208434
704 1.375 1.67428 64.8568 114.485
868 1 0.998769 1.0134 0.99787
144 1 0.562595 0.669362 0.391396
418 1.15789 0.398039 0.449851 0.24604
300 1 0.999551 0.626595 0.571454

Table 3.1: Typical results for a Hanning window

to be short and introductory. Thus no attention has been given to numerical
efficiency. The distribution of the cases can be found in Figure 3.11.

Figure 3.11: Experiment with Hanning window: Distribution of cases.

The double preconditioning method is in 67.50% of all cases convergent
and preferable to the single preconditioning methods, measured by the norm
of the distance to identity of the preconditioned matrix, ‖I − P−1S‖. Out
of the remaining 32.50% the diagonal method is often preferable. As will
be seen in 3.4.3.7 this property does not depend only on the shape of the
window, but a lot on the lattice parameters, most notably how small b is, and
the chosen settings of the experiment. When the above mentioned quality
criterion is used to measure significant differences, in this experiment only in
0.1% of the cases one of the single preconditioning methods was ’essentially’
preferable (more than 10% difference).
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In these experiments we could also observe that if the norms of both the
single preconditioning cases are around 1, the norm of the error of the double
preconditioning method is also around 1.

3.4.3.7 Systematic experiments

In order to verify that the double preconditioning method is not only highly
efficient for very special cases (such as the Gaussian), but for most windows
typically used in Gabor analysis we have carried out systematic investiga-
tions. We have used several different windows (Gauss, Hanning, Hamming,
Kaiser-Bessel, Blackman Harris, Rectangle and even noise), with various
zero-padding factors, random signal lengths n < 1000, random lattice para-
meters a, b with a · b|n and random support of the window wsupp ≥ a.

Here we have tried to minimize the cases, where the matrix is diagonal
because of the lattice parameters (if supp ≤ n/b). In this case it would still
be possible to use the double preconditioning, we would only lose precision
due to calculation and round-off errors, and the calculation is slower as the
double preconditioning is more complex. Due to the conditions on the lattice
parameters and the support of the window mean, we do get a certain bias
into our statistical investigation. But this bias seems acceptable.

The complexity of the algorithm and these tests have been further de-
creased by staying completely at the block matrix level, by doing all calcu-
lation with the efficient block algorithms and by using the Walnut norm.

The results are summarized in Table 3.2. For each window the exper-
iments have been repeated 20, 000 times, so overall in the following table
120, 000 random parameters have been used.

In the rows we see the following percentages

1. the Gabor system was no frame

2. none of the (above) iteration scheme would converge, i.e. none of the
norms was smaller than 1

3. the diagonal norm was smaller than the double norm, where in

3’) the frame matrix was already diagonal (and so both methods were
essentially equal).

4. the circulant norm was smaller than the double norm, where in

4’) the frame matrix was already circulant (and so both methods were
essentially equal).
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Han Ham Bla Kai Gau Noi
1) 0.00 % 0.00 % 0.39 % 0.00 % 3.66 % 0.00 %
2) 36.42 % 37.36 % 29.80 % 34.05 % 22.42 % 56.00 %
3) 28.53 % 28.53 % 29.80 % 28.62 % 30.17 % 27.87 %
3’) 28.50 % 28.53% 29.39 % 28.46 % 30.17 % 27.80 %
4) 13.52 % 12.30% 9.58 % 16.46 % 2.41 % 1.73 %
4’) 0.00 % 0.49% 9.19 % 0.74 % 0.11 % 0.00 %
5) 0.12 % 0.50% 1.02 % 0.00 % 0.02 % 00.12 %
6) 0.00 % 0.00 % 0.00 % 0.00 % 0.14 % 0.00 %
7) 0.00 % 0.11% 0.04 % 0.08 % 7.77 % 0.00 %
8) 49.83 % 50.83% 60.45 % 50.07 % 74.34 % 49.83 %
9) 78.37 % 81.15% 86.25 % 75.92 % 96.89 % 78.37 %

Table 3.2: Systematic Tests: (Han)ning, (Ham)ming, (Bla)ckman-Harris,
(Kai)ser-Bessel (β = 6), (Gau)ss and (Noi)se

5. the double norm was bigger than 1, the best single norm was smaller
than 0.9.

6. the double norm was essentially larger (by a factor 10) than the best
of the single norms.

7. the double norm was essentially smaller (by a factor 10) than the best
of the single norms.

8. The double preconditioning method is better or essentially equal if the
system is a frame. We sum up the cases, where the double precondition-
ing norm is smaller and the matrices are already diagonal or circulant
(because then the difference is only due to calculation errors).

9. The double preconditioning method is better or essentially equal if any
of the iterative scheme works.

Nearly in all cases these windows form a frame. A prominent exception
is the Gaussian window, which is due to the zero-padding. About the same
percentage for all windows did not allow any of the preconditioning iterative
algorithm to converge, exceptions being the Blackman-Harris with a some-
what low percentage, the Gaussian with a very low percentage and the noise
window with a very high percentage. This leads us to the statement that the
preconditioning algorithm works better for ’nice’ windows.

For the windows tested it appears that the percentage of diagonal matrices
is comparable, even in the case of a noise window. This is partly due to the
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particular properties of the chosen experiment. The percentages for circulant
matrices respectively for convergence of the circulant preconditioning method
seem to be quite different for different windows.

In very few cases, a single preconditioning algorithm would converge, but
the double preconditioning would not. If investigated more closely it can
be seen that this happens nearly always only in cases, when also the single
preconditioning norms are high, near to one. For the cases when all relevant
norms are smaller than one, we see that for the Gaussian window we have only
a very small chance that the best single preconditioning method is essentially
better than the double preconditioning method, but a rather high chance for
the opposite. For all other windows the chance for an essential improvement
using the double preconditioning method is not very big, but there is no
chance for a deterioration. Note that here the double preconditioning method
still keeps an advantage, since it can be more easily used as ’default’ method
than the single preconditioning methods as seen in 9) in Table 3.2.

Overall we see that with all windows the double preconditioning algo-
rithm works in about half of the cases, if we have a frame. And it works in
about 80 percent of the cases, when any of the preconditioning would work,
with the notable exception of the Gaussian window, where it works nearly
always. The Hanning and Hamming windows are quite similar to each other
but contrary to common believe they are not very similar to the Gaussian
window. We see that the behavior of the double and single preconditioning
method significantly depends on the chosen window. Hence the connection of
analytical properties of the windows with the efficiency of the preconditioning
methods should be investigated. Results in this direction can be expected,
e.g. due to the behavior of the Gaussian on one side and noise on the other
side.

3.4.4 Perspectives

We believe that this algorithm can be very useful in situations, where the
calculation of the inverse frame operator or dual window is very expensive or
cannot be done at all. For example in the situation of quilted Gabor frames
[34] or the Time-Frequency Jigsaw Puzzle [72], there exists a frame, which
globally is not a Gabor frame. Hence the dual Gabor window cannot be
found, but the dual frame can be approximated by the dual windows of the
local Gabor frame in these cases. It might be preferable to use a good and
fast approximation of the local Gabor dual windows to a precise calculation
of the local canonical dual, as precision is lost at the approximation of the
global dual frame anyway.

Some issues will have to be investigated further in the future. For exam-
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ple a more easily interpretable condition for the window, when the Jacobi
algorithm is convergent, would be nice. Section 3.4.3.7 gives reasons to be-
lieve that an investigation of the analytic properties of a window and the
connection to its ’preconditioning behavior’ is fruitful. Furthermore the idea
can be extended by using preconditioning matrices produced by projection
using other commutative subgroups of the time-frequency plane, not only the
translations and modulations.
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Chapter 4

Application to Psychoacoustical
Masking

We have already seen that to minimize computation time, memory require-
ments and bandwidth, the redundancy of a signal representation should be
kept low. Many audio coders, for example, try to minimize the bit rate for
audio signals. For audio signals, where the main interest lies in the human
perception of sound, any part of the signal that cannot be heard is obviously
redundant. This means the representation can be made more sparse, if it is
restricted only to the psychoacoustical relevant parts, which is exactly what
masking filters do.

Masking filter algorithms are for example used in the MP3 coding, refer
for example to [79]. Their primary task is to filter signal components, which
cannot be perceived by the human auditory system. This is certainly a non-
trivial task. It strongly depends on the signal itself, and so it can be seen
as an adaptive filtering, which is highly non-linear. But this filtering can be
separated into two steps, first the calculation of the operator, which then is
applied to the signal.

x 7→ G(x)x

The second part is linear again. In the case of masking this means that
first the mask for the time-frequency coefficients is calculated, which then is
applied as an irregular Gabor multiplier.

This is a mathematical work, so only the basic ideas are formulated and
the basic idea for an algorithm is presented. The author is in no way a
fully-fledged psychacoustican, but in discussion with psychoacousticans and
acousticans, most notably B. Laback, some ideas were formulated how to
find a model and algorithm for time-frequency masking. These ideas cer-
tainly have to be validated by psychoacousticians. Psychoacoustical tests
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and experiments have to be performed. There are no concrete implementa-
tions in this chapter or in the appendix, as this has to be adapted to the
system and the programming language used for these experiments.

4.1 Psychacoustical Basics

For details on aural perception and on psychoacoustics see [67] or [92].

Figure 4.1: The human ear, from [59].

Sound waves travel through the air (or any other media) to reach the
pinna, the outer ear, cf. Figure 4.1. The pressure wave spreads through
the ear canal, which has a certain frequency response, to reach the tympanic
membrane, where the ossicular chain transfers the big, but small-force vi-
brations to strong, but small vibrations at the oval window in the cochlea.
There the basilar membrane is excited, which stimulates the hair cells to send
impulses through nerve cells.

It is clear, that humans cannot only perceive temporal or spectral features,
but have the ability to perceive both, otherwise speech or music perception
would not be possible. The human auditory system, therefore, does perform
some time-frequency analysis. Since the beginning of the investigation of
human audio perception, scientists have searched for a good model for this
time frequency analysis.
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4.1.1 Aural perception

The pure tone can serve as the reference for the psychological dimension of
pitch, because the pitch is closely related (but not identical) to the physical
quantity of frequency. It can be said that the human auditory system be-
haves much like a frequency analyzer. The basilar membrane in the cochlea
vibrates. It is excited by the traveling sound wave, which moves from the
oval window to the apex of the cochlea. The maximum vibration for high-
frequency tones occurs near the oval window, for low-frequency near the apex.
This correlation between frequency and spatial point on the membrane is
called tonotopy, cf. Figure 4.2. The hair cells on the basilar membrane are
stimulated and generate electrical pulses.

Figure 4.2: The tonotopy on the Basilar membrane, from [59].

A very basic model for the time-frequency analysis of the human ear is
the STFT with window length of about 40 ms. For a basic model the phase
information can be neglected.

4.1.1.1 The Basilar Membrane

In the human ear, frequencies are perceived with hair cells on the basilar
membrane. The sound wave travels through the pinna, the eardrum, the
ossicular chain to the oval window of the cochlea. It excites the basilar
membrane and so activates the nerve cells. Closer to the window they react
to high, farther away to low frequencies.

Physiological measurements on the basilar membrane and on the auditory
nerve show that the frequency of a pure tone is encoded in the site of the
maximum activation along the tonotopic organization. This analysis is an
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integral part of the initial transduction of a tone from mechanical vibrations
to neural impulses. Therefore, different harmonics of a complex tone end up
in different neural channels.

One single frequency is not only exciting a single cell, but it causes a
certain excitation pattern on the basilar membrane, also called spreading
function. This pattern depends on the frequency and amplitude, but a good
approximation, see [92], is a band pass filter with a certain center frequency
and certain slopes at the edges of the pass band. Linear slopes, in dB/Bark,
are a good approximation. The Bark scale, see e.g. [117], is a frequency scale
better fitted to human perception. This scale is empirically determined, but
a formula, which describes it fairly well, is

fbark = 13 tan−1(0.76 · fHz) + 3.5 tan−1(
fHz
7.5

2

)

where fHz is the frequency in Hz. In first approximation, the Bark scale
resembles the tonotopy. Refer to Figure 4.3.

Figure 4.3: The Bark scale

For this scale the concept of the critical band is important, as a criti-
cal band corresponds to 1 bark. A basic definition of critical band is the
bandwidth within which signal components interact fundamentally differ-
ently than for larger bandwidths. For example for two signal components
within a critical band their power is additive, for components separated by
more their loudness is, cf. [67]. Again in first approximation the critical
bandwidth can be seen as the basis for an auditory filter.
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As the central system interacts with the hair cells, such an interaction
is called efference, excitation on the basilar membrane is highly amplified
through this process, resulting in a highly non-linear process. A linear model
can only be an approximation, and so the critical bandwidth depends on the
signal class, the amplitude and the phase information.

4.1.2 Masking

Masking can be defined generally as the situation, where the presence of one
stimulus, the masker, decreases the response to another stimulus, the target.

There are, of course, several configurations where this effect occurs in
audio perception. We start with a recap of the basic ideas of the so-called
simultaneous or frequency masking.

For more details see [137] or [39].

4.1.2.1 Simultaneous Masking

A basic model for the frequency masking effect can be found in the following
way. Suppose we have one signal component, the masker. The auditory
system can only detect a second, simultaneously presented, signal component,
the target, if the excitation pattern of the resulting signal is significantly
different from the one evoked by the masker. If it is not, the second sound
cannot be perceived, it is masked. This kind of masking is called simultaneous
masking as the two components are presented at the same time.

Figure 4.4: Traveling wave on the Basilar membrane, from [59].

A single sinusoidal component does not excite the basilar membrane only
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at a single point, but evokes a certain excitation pattern. See Figure 4.4.
For perceptual issues a logarithmic scale of amplitudes is best fitted, see

[67]. This has, of course, a big influence on the additivity of two excitation
patterns of two sinusoidal components, see Figure 4.5.

Figure 4.5: The addition of excitation patterns plotted on logarithmic fre-
quency and amplitude scales [68]. The masker is shown with a solid, the
target with a dotted and the sum with a dashed line.

The effects can be seen for example in a masking experiment using a pure
tone probe and a complex tone masker, refer e.g. to [67]. The idea of this
experiment is that the pure tone cannot be heard if the excitation pattern of
the pure tone plus masker is not distinguishable from the one by the masker
only. The amount of masking, measured in dB, is defined as the threshold
level of the sine, i.e. where the sine tone is barely audible, in presence of the
masker, minus the threshold level when the sine tone is presented alone. By
measuring the amount of masking as a function of the probe frequency, the
experiment traces out the excitation pattern of the masker.

4.2 The Masking Algorithm By Eckel

A good approximation of the spreading function for a sinusoid signal is a
triangle function (in the Bark scale). This was used in [37] to formulate
a simple masking model, from which an algorithm for simultaneous mask-
ing was implemented. The simultaneous masking algorithm is implemented
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as an adaptive filter, using a phase vocoder as analysis/synthesis system.
The masking threshold is calculated for each spectrum. First the spectrum
is converted to bark scale and the amplitude is converted to a logarithmic
scale. The amplitude spectrum is convolved with a nearly triangular func-
tion. It is set to amplitude zero at frequency zero (Bark) as no component
can mask itself. Convolution is used for the addition of the masking effect,
because it is known that even signal components below the threshold have
an influence. This is called the masking or relevance threshold. Only the
components exceeding it, are used for further re-synthesis. See figure 4.6 for
the implementation in STX .

4.2.1 Simultaneous Masking For Complex Signals

This algorithm was tested in [37] only for certain parameters, a sampling
frequency of 16 kHz, a window length of 256 samples and a hop size of 32
samples. Based on data from the literature the lower slope was set to 27
dB / bark and the upper slope to −24 dB / bark. Also a so called damping
factor is used, which describes the ”sharpness” of the edge of the triangular
function.

In the evaluation experiment in [37] 312 musical signals were presented,
which were chosen to represent a variety of different musical styles and instru-
ments. The test with these complex signals was chosen to obtain significant
results representing real-life situations. The selected stimuli had lengths of
300 ms, 600 ms and 1200 ms.

These signals were presented to 43 persons. It was tested for which level
of ’offset’ the irrelevance-filtered signals can not be distinguished from the
original signal. The ’offset’ is a value in dB by which the threshold level
is increased or decreased. These values were chosen such that there was no
statistical difference in the answers of the subjects, whether two signals were
different, using either twice the original signal or the original signal and the
masked signal. The hypothesis was tested with a student-t-test.

4.2.2 The Algorithm In STX

This was implemented in STX [96] the signal processing software system of
the Acoustics Research Institute of the Austrian Academy of Sciences. In
Figure 4.6 we see the basic routine. The parameters of the masking filter can
be changed freely, e.g. all the FFT parameters or the form of the spreading
function used, like the slopes of the linear parts the sharpness of the peak
and the height of the peak plus the offset of the function. Two special
options have been implemented, where the parameters can be chosen such
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that a certain part of the energy or spectral bins is masked. To calculate the
spreading function from the given parameters, a faster, analytic method is
implemented in STX .
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Figure 4.6: Masking filter in STX [96]

At the Acoustics Research Institute this filter in STX was used for various
applications as stated in Section 4.2.3. Experience tells that the parameters
of [37] can be generalized to other settings. The model used for this algorithm
is based on the Fourier view, so every single spectrum is used and it is
assumed that the signal is ”quasi-stationary”, see Figure 4.7. If the window
size is getting larger and larger and so more and more time information is
encoded in the spectrum, and it becomes evident that the algorithm does
not give a proper resemblance of the actual situation.

For an example see Figure 4.8, where not the irrelevance threshold but
overmasking is used. Overmasking was investigated in [30]. In that paper
the parameters were chosen to filter out more signal components than with a
relevance threshold. In Figure 4.8 the parameters for ”musical irrelevance”,
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Figure 4.7: From STX : The amplitude spectrum (dB) and the relevance
threshold.

cf. [30], were chosen, which means that a difference to the original signal can
be heard, but the relevant musical information is still preserved.

4.2.3 Typical Application

Typical application of masking filters include

1. Sound / Data Compression : For applications where perception is rel-
evant, there is no need to encode perceptually irrelevant information.
Data which can not be heard should be simply omitted. A similar
algorithm is for example used in the MP3 encoding. If over-masking
is used, this means that the threshold is moved beyond the level of
relevance, and so a higher compression rate can be reached.

2. Sound Design : For the visualization of sound the perceptually irrele-
vant part can be disregarded. This is for example used for car sound
design, see e.g. [94].

3. Background - Foreground Separation : With over-masking it is possible
to separate the leading instrument in a piece of music, refer to [30].
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Figure 4.8: Simultaneous masking in STX : Top: original sound (music),
Bottom: perceptual irrelevant signal parts removed

4. Amplification of masked components: Under certain conditions, the en-
hancement of weak components, which fall below the relevance thresh-
old, can improve speech recognition in noise, see [78], or music percep-
tion [77].

5. Contrast Increase : If more spectral parts are deleted, the hearing
comfort of hearing impaired people often increases. [77]

4.3 Time Frequency Masking

In the Eckel model one important restriction is to single spectra modeling
only the simultaneous frequency masking. Here we propose a (very) simple
algorithm to include temporal masking effects as a natural extension of the
Eckel algorithm. It has to be investigated in psychoacoustical experiments.
This masking model was found by trying to find a simple time frequency
algorithm extending the Eckel algorithm and not by trying to incorporate the
plentiful experiments done on time or frequency masking or existing models
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for time frequency masking, for example found in [116] or [125]. Please keep
in mind that psychoacoustics was not the main focus of this work.

4.3.1 Temporal Masking

Beside the frequency masking effect, temporal masking effects are well-documented.
Interestingly it is possible to mask both in forward and backward direction.
If a masker is presented before or after the target, its perception is influenced.
The masking level for temporal masking can be found in Figure 4.9. This
was for example studied in [39]. One prominent example for this effect is,
that pauses in music, compared to tones, are always perceived shorter than
they physically are, cf. also [39].

Figure 4.9: Forward and backward masking, from [137]

Possible explanations for the temporal masking effects are, according to
[91]

1. a decay of the response of the basilar membrane to the masker,

2. reduction of sensitivity of recently stimulated neurons (adaptation)

3. persistence in pattern of neural activity evoked by the masker (more
central)

4.3.2 Heuristic Tests

The first idea of testing, how masking in the time-frequency plane would
be to compare two chirps, sinusoidal tones with rising (or falling) frequency
respectively a chirp and a stationary tone, as depicted as spectrograms in
Figure 4.10.
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Figure 4.10: Simple (but naive) experiment for two chirps

But in (heuristic) tests it could be seen that these two chirps interact in
a special way, comparable to two sinusoidal components. Due to the non-
linearity of the auditory system, two similar sinusoidal components produce
a difference tone, which is very easily detectable, refer to e.g. [67]. It is
well known, that because of this effect, it is impossible to directly measure
the simultaneous masking effects of two sinusoidal components, see [137]. A
similar problem seems to be in effect, when chirps are used.

For a possible experiment to investigate time-frequency masking and how
to avoid this problem refer to Section 4.3.4.3.

4.3.3 The Masking Gabor Multiplier

The goal is to get a time-frequency masking model, as presented in Figure
4.11.

A simple explanation for simultaneous masking is the excitation pattern
on the basilar membrane, for temporal masking a explanation can be found,
which is more central in the human auditory perception. So a simple model
for time-frequency masking is first to calculate the simultaneous masking
effect, simulating the excitation of the hair cells with a convolution of the
short-time spectrum by the simple triangular function introduced in [37].
The temporal masking effect can be seen to be more central and so ’later’ in
the perception process, this data now is convolved with another triangular
function to simulate the temporal effect. This is done because it can be
assumed that a multitude of nerve cells are stimulated. This has to be
considered.
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Figure 4.11: Time frequency masking pattern, from [39]. Transient masking
pattern of a single critical band noise masker impulse. The hatched bar is
the spectral and temporal extent of the masker impulse.

To make the main the main concept clearer let us repeat: The basic idea
is to use single time-frequency points, calculate the spreading function with a
simple triangular model, to simulate the excitation of the basilar membrane.
This excitation is processed parallel by the nervous system. Therefore in this
model the temporal masking effect is applied at every single frequency point.
Again a simple triangular function is chosen. In combination an masking
effect between time-frequency points is modeled, which does not occur in
temporal or spectral direction only. This is done for all time-frequency points
and the threshold levels are summed up. See Figure 4.12.

Like in [37] an offset parameter is used, which shifts the time-frequency
pattern up or down. This parameter can be seen as the value corresponding
to how two different excitation patterns have to be to be distinguishable. To
add more flexibility two different offset values can be chosen.

4.3.3.1 Parameters:

A Gaussian window is chosen for the STFT as default, as psychoacoustical
tests indicate that the essential support in the time-frequency plane of the
window underlying the human auditory perception is close to the minimum,
see [109], and so is near to a Gaussian window.

As default for many parameters the values from [37] are used, for example
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Figure 4.12: Time frequency masking idea. (Top left:) Spreading function
(Top right:) Temporal masking pattern (Bottom:) Combination effect in the
time-frequency plane.

the slopes of the triangular functions are set to 24 dB and −27 db for the
frequency part. For the temporal masking function the slopes suggested in
[137] and seen in Figure 4.9 are used , 2 dB/ms respectively −0.5 dB/ms,
are used as default.

Overall, we have the following parameters, which should be adapted to the
properties of the auditory system by thorough psychoacoustical experiments:

1. the sampling rate SR of the audio file. (Default: 16 kHz).

2. the window g, especially the length win of the window. (Default:
Gaussian window with 256 samples).

3. the temporal shift b (the hop size). (Default: 32 samples).

4. the number of frequency sample nb (bark points). This should be chosen
rather high, to have a high redundancy and therefore to increase the
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chance of having an irregular Gabor frame. (Default: 128, redundancy
is 4).

5. the offset value of for the frequency masking function. (Default: 1 dB).

6. the offset value ot for the temporal masking function. (Default: 1 dB).

7. the ’excitation pattern function’ ep(ω):

(a) the lower slope: kd (Default: 27 dB)

(b) the upper slope: ku (Default: −24 dB)

such that

ep(ω) =





kd · ω + of ω < 0
0 ω = 0

ku · ω + of ω > 0

The value at zero is set to zero, because no signal component can, per
definition, mask itself.

8. the ’temporal masking function’ tm(t):

(a) the backward slope: τb (Default: 2 dB / ms)

(b) the forward slope: τf (Default: −0.5 dB / ms)

such that

tm(t) =





τb · t+ ot ω < 0
0 ω = 0

τf · t+ ot ω > 0

This function has to be converted to the time-frequency sampling,
where ∆t = b

SR
. So for the default values of b and SR we get τb = 4

db/sample and τf = −1 db/sample.

4.3.3.2 Algorithm:

Let the signal be in CL. Let b̃ = L/b.

1. Calculate the STFT of the signal with the window g. Use the pain-
less non-orthogonal expansion method [63], which is equivalent to the
algorithm used in engineering see e.g.[3], to speed up this calculation.

2. Do the semi-irregular sampling of the STFT, using frequency sampling
points corresponding to nb equally spaced bark points.

3. Check if the frame operator for this irregular Gabor system is invertible.
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• If not, increase the number of sampling points in the frequency
domain nb.

• If yes, calculate the canonical dual window g̃.

This has to be done only once for each set of parameters, independent
of the data.

4. Calculate the logarithmic amplitude information A(t, ω). Keep the
phase information.

5. Calculate ep ⊗ tm and do a 2D convolution with A(t, ω) to get the
’masking pattern’ MP = A ∗ (ep⊗ tm).

Convolving A(t, ω) first with ep(ω) and then with tm(t) is the same as
convolving in both dimensions with ep⊗ tm, as

((A ∗ ep) ∗ tm) (t, ω) =
b̃−1∑

τ=0

(A ∗ ep) (τ, ω) · tm(t− τ) =

=
b̃−1∑

τ=0

(
nb−1∑

ν=0

A(τ, ν) · ep(ω − τ)

)
· tm(t− τ) =

=
b̃−1∑

τ=0

nb−1∑

ν=0

A(τ, ν) · (tm(t− τ) · ep(ω − τ)) =

=
b̃−1∑

τ=0

nb−1∑

ν=0

A(τ, ν) · (tm⊗ ep) (ω − τ, t− τ) =

(A ∗ (ep⊗ tm)) (t, ω)

This 2D convolution can be speeded up, by using property (4) from
Lemma 3.2.9 for the Fourier matrix transformation and using a FFT
algorithm.

6. Use the result as an 1/0 mask for an irregular Gabor multiplier, by
setting

A1(t, ω) =

{
0 A(t, ω) < MP (t, ω)

A(t, ω) otherwise

7. Use A1 as amplitude information and the original phase information
for a Gabor synthesis with g̃.
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4.3.3.3 Advantages

The advantages of this algorithm to the one in STX are

1. the incorporation of temporal forward and backward masking

2. the incorporation of Gabor theory results, especially that

(a) it can be checked, if the chosen irregular sampling can lead to a
Gabor frame, needed for a chance for perfect reconstruction (if no
modification would be done).

(b) If this is possible the synthesis window can be calculated for which
perfect reconstruction is guaranteed.

4.3.4 Perspectives:

First and foremost the above model has to be implemented and tested in
experiments, validated and adapted by psychoacousticans.

Further investigation of this topic can include the following ideas:

4.3.4.1 Newer Psychoacoustical Knowledge

At the Acoustics Research Institute some further extensive psychoacoustic
tests of masking have been performed. These tests can result in an improve-
ment of the masking algorithms, including using nonlinear auditory filters
for the level dependence, outer/middle ear filtering (ISO-phones), taking into
account the absolute threshold associated with internal noise and the depen-
dency of masking on tonality of masker components for non-linear additivity
of masking for non-tonal components.

4.3.4.2 Using Parts Of The Signals

It is well known, that different type of signals result in different masking
patterns, see e.g. [137], especially tonal, transient and stochastical parts
have different properties both as maskers and targets.

One way to improve the model would be to use algorithms to find tonal,
transient and statistical components in masker and target and the signal and
then use different masking patterns for each combination. For the separation
the algorithm found e.g. in [72] or [89] can be used.
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4.3.4.3 Time-Frequency Masking Experiment

An especially interesting questions is, whether the time-frequency masking
effect is only a superposition of frequency and temporal masking or whether
there is some other, more complex interaction. To obtain more knowledge
about the properties of masking in the time-frequency domain, the basics for
an experiment have been developed.

The basic idea is to use a broad band, uniformly masking noise (D) as
masker. As targets one chirp (C) and sinusoidal signals (A,B) are compared
to each other, cf. Figure 4.13

Figure 4.13: Experiment for time-frequency effect of masking.

In the classical model, if the signals are chosen with equal energy in the
critical bands, there should be no difference in masking effect, but recent
studies have shown that there are differences, refer to [15]. Similar experi-
ments have already been done, for example in [95], but there are still a lot
of open questions, for example a systematic investigation of the influence of
the bandwidth and slope of the sweep.
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Chapter 5

Conclusion

5.1 Summary

In this work we have spanned the whole range from mathematical theory to
application. We have started with the theory of frame multipliers, proceeded
with Gabor multipliers (regular and irregular), investigated the numerics of
the discrete Gabor analysis and applied the theory to give an idea for a time-
frequency masking algorithm.

In the first chapter we have investigated the new concept of frame multi-
pliers, which generalizes the idea of Gabor multipliers.

We have started with an extensive overview of frame theory to help the
reader familiarizing with this theory and getting a basic impression of frames.
In this introductory part we have shown new results, mostly by extending
known results to Bessel sequences, frame sequences or Riesz bases. We have
also introduced new compilations and reformulations of known result, with
the intention to show them from a different viewpoint. As an example of new
results, we mention the connection of operators and frames in Section 1.1.7.

As this work aims at application, we were interested in the investigation
of frames in finite dimensional spaces. To this end, we devoted Section 1.2 to
deal with this issue. More precisely, we have shown that finite-dimensional
spaces can be classified by frames, we provided new results on frames for
the Hilbert-Schmidt class of operators and we compared the numerical com-
plexity of the HS inner product of an operator and the rank one operator
gk ⊗ f l.

Since the concept of frame multipliers has not been investigated before,
we have studied their basic properties for the first time. The ’main theorem’
in this context is the following: When the symbols are in a certain sequence
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space (like l∞, l2, l1, ...), then the multipliers are in certain operator spaces
(bounded, HS, trace class). Another important result states that the frame
multiplier depends continuously on the symbol and on the involved frames
(in a special sense). We have also proved that for Riesz bases the frame mul-
tipliers behave ’nicely’, i.e. mostly importantly that the connection symbol
to operator is an injective one. Finally, we have introduced an algorithm
for the approximation of arbitrary matrices by frame multipliers, for a given
frame. This algorithm has been programmed in MATLAB and can be found
in the appendix.

In the beginning of the second chapter we have first given a short intro-
duction to Gabor systems and have taken a close look at irregular systems.
We have, for example, directly shown that for relatively separated irregular
lattices, the Gabor system with a window in S0 (i.e., the Feichtinger’s Alge-
bra) forms a Bessel sequence. In relation with Gabor multipliers, we have
extended known results on the regular case to the irregular case. For example
we have shown that under certain conditions these operators depend contin-
uously on the symbol, atoms and lattices, where the similarity of lattices are
measured by a ’Jitter-like’ norm.

Several MATLAB algorithms have been implemented, e.g. the calcula-
tion of an irregular Gabor family for a given atom and a given set of time-
frequency points. In a way parallel to what we had done in the first chapter,
we have given an algorithm for the approximation of a matrix by irregular
Gabor multipliers. To this end, we have used an algorithm to calculate the
Gram matrix of an irregular Gabor frame, which makes the approximation
algorithm numerically more efficient than that in Chapter 1. Experiments
have shown that, in the case of one window and a regular lattice, this algo-
rithm yields the same result as the algorithm in [50].

In the third chapter we have considered Gabor analysis in the finite-
dimensional discrete case. After a short introduction to the special properties
of Gabor analysis on Cn we have investigated classes of block-matrices which
play an important role in this context. We have pointed out a close connec-
tion between the non-zero block matrix and the Janssen matrix, and have
introduced corresponding norms. We have also pointed out the connection
between these norms and why they can be useful in different situations.

We dedicated Section 3.3 to an article by Thomas Strohmer [122], in
which an algorithm for inverting the Gabor frame operator is introduced.
This algorithm is numerically very efficient in the case of integer redundancy.
Many algorithms from this article are used, for example, in the MATLAB
toolbox by P. Soendergard [118]. We have pointed out and corrected some
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small errors in the original article.
We have also introduced an iterative method for finding the inverse of a

Gabor frame operator, which can also be used to compute very good approx-
imate dual windows, at very low computational costs, if the window and the
lattice fulfill certain properties. We have introduced a fast algorithm using
existing block matrix methods. The method has been constructed so that
diagonal and circulant matrices are perfectly approximated (up to precision).
We have shown that this method is very often preferable to other iterative
schemes. For ’nice’ windows and lattice parameters, it has been made evi-
dent that the first approximation, i.e., the preconditioning matrix, is already
a good approximation of the inverse frame matrix.

For the single preconditioning case we have specified sufficient conditions
on the window which guarantees that the algorithm converges, and therefore
the Gabor system forms a frame. We have also provided conditions on the
non-zero block matrix for the convergence of the Jacobi algorithm. The con-
dition on the window is not very intuitive, but as the block matrix can be
established quickly, this check can be done in a convenient way.

In the fourth chapter we have introduced the basic idea for a time-
frequency masking algorithm. To this end, we have given a short intro-
duction of the basic ideas of psychoacoustical masking and the algorithm
implemented in STX . We also have presented an idea, which was developed
with the help of psychoacousticans, on how this algorithm can be extended
to incorporate temporal forward and backward masking as well as results
from Gabor theory.

5.1.1 Perspectives And Future Work:

No scientific work can claim that all connected questions are answered. In
this last section we will state a few of the open problems and possible future
investigations connected to this work:

Many question in connection with the new concept of frame multipliers
should be investigated. For example we firmly believe that symbols in lp

lead to multipliers in the Schatten class [134]. It would be interesting to
use the concept of the localization of frames [58] for multipliers ad it could
be seen that the Gram matrix plays an essential role here. The concept of
weighted frame has been introduced in [13]. The frame operator for such
frames are just frame multipliers, the connection of these two notions should
be delved into. Also the investigation of how to make a frame ”tighter”
by weights currently gets some attention [101]. This is closely related to
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the investigation of how well the identity can be approximated by a frame
multiplier and this connection should be investigated further.

The irregular Gabor theory still has to receive a lot of attention. For
example an important question is how the dual frame for such a family can
be described. Frames of irregular translates are a current active topic of
research [23]. The connection to Gabor Multipliers by the Kohn-Nirenberg
symbol should be used for synergy effects between these two concepts. Espe-
cially for irregular Gabor multipliers an investigation of the eigenfunctions of
these operators seem attractive. First experiments indicate that the eigen-
functions corresponding to big eigenvalues of the frame operator, as special
case of a Gabor multiplier, have their peaks in the time-frequency plane at
the sampling points, while ”small” eigenfunctions ”live” in between them.
Last but not least it would be interesting to investigate perturbation results
for well-balanced Gabor frames.

The algorithm for the inversion of a Gabor frame matrix by double pre-
conditioning seems to be very useful in situations, where the calculation of
the inverse frame operator or dual window is very expensive or cannot be
done at all. For example in the situation of quilted Gabor frames [34] or the
Time-Frequency Jigsaw Puzzle [72], there exists a frame, which globally is
not a Gabor frame. Hence the dual Gabor window cannot be found, but
the dual frame can be approximated by the dual windows of the local Gabor
frame in these cases. It might be preferable to use a good and fast approxi-
mation of the local Gabor dual windows to a precise calculation of the local
canonical dual, as precision is lost anyway at the approximation of the global
dual frame. This application of the presented algorithm should be explored.
Other issues which seem to justify future work are for example an investiga-
tion of more easily interpretable condition for the window, when the Jacobi
algorithm is convergent. Furthermore the idea of double preconditioning can
be extended by using other preconditioning matrices. For example such ma-
trices as produced by projection using other commutative subgroups of the
time-frequency plane. The new norms, the Walnut and Janssen norm, can
be extended to infinite matrices and operators.

For the time frequency masking concept the most important future work
will be the testing and validation by psychoacoustical experiments. Newer
psychoacoustical models should be incorporated, for example using a outer-
middle ear filtering (ISO-phones) or taking into account the absolute thresh-
old associated with internal noise. As its is well-known fact that different
classes of signal components have different masking effects, it seems very
promising to investigate algorithm which separate signals in tonal, transient
and statistical components. For the separation for example algorithm found
in [72] or [89] can be used.
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Appendix A

Mathematical Background

In this appendix we collect

1. the mathematical background, needed for the results in the main part,
in this chapter. The author has decided to make that collection rather
extensive to help to make that work more self-contained. Not all results
have the exact citations, but in every section in the beginning you find
references for some standard works, where you find all results, that
don’t have special citations.

2. the MATLAB-algorithms, produced for the main part, in the next one.

A.1 Basic Notations

With K ⊂⊂M we will mean a compact subset K of the set M .
We will use the words injective and one-to-one, surjective and onto, kernel

and null-space as analogue formulations.
With χM we will denote the characteristic function of the set M :

χm(x) =

{
1 x ∈M
0 otherwise

For a list of symbols, see the main index under the heading ”symbols”.

A.2 Tonelli’s And Fubini’s Theorem

Taken from [63]: Let µ and ν be positive Borel measure on Rd and let µ× ν
be their product measure on R2d.
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Theorem A.2.1 (Tonelli) If f ≥ 0 on R2d, then

∫ ∫

R2d

f(x, ω)d(µ× ν) =

∫

Rd



∫

Rd

f(x, ω)dν(x)


 dµ(ω) =

=

∫

Rd



∫

Rd

f(x, ω)dµ(ω)


 dν(x).

This means that either all integrals are finite and equal or all are infinite.

Theorem A.2.2 (Fubini) If f ∈ L1(R2d, µ×ν) then the equations in Tonelli’s
theorem hold. Furthermore, for almost all ω ∈ Rd the section x 7→ f(x, ω)
is in L1(Rd, µ) and for almost all x ∈ Rd the section ω 7→ f(x, ω) is in
L1(Rd, ν). Further more x 7→

∫

Rd

f(x, ω)dν(ω) and x 7→
∫

Rd

f(x, ω)dµ(x) are

in L1(Rd, µ) and L1(Rd, ν) respectively.

This is of course also true for the discrete measure, so if
∑
k,n

|ak,n| <∞,

∑

k,n

|ak,n| =
∑

k

(
∑

n

|ak,n|
)

=
∑

n

(
∑

k

|ak,n|
)

A.3 Linear Algebra

For details see for example [123] or [26].

A.3.1 Vector Spaces

Definition A.3.1 A set V with the binary operations + : V × V → V and
· : K × V → V is called a vector space over the field K, if

1. (V,+) forms a commutative group, i.e.

(a) + is associative, i.e. x+ (y + z) = (x+ y) + y.

(b) + is commutative, i.e. x+ y = y + x.

(c) there exists a 0, such that x+ 0 = x for all x ∈ V .

(d) for every x ∈ V there exists an element (−x) such that x+(−x) =
0.
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2. · is associative, i.e λ · (µ · x) = (λ · µ) · x

3. · and + are distributive.

(a) (λ+ µ) · x = λ · x+ µ · x
(b) λ · (x+ y) = λ · x+ λ · y

4. For 1 ∈ K for all x ∈ V 1 · x = x.

Definition A.3.2 Let V be a vector space. A function ‖.‖ : V → R+ is
called norm, if

1. ‖λ · x‖ = |λ| · ‖x‖

2. ‖x+ y‖ ≤ ‖x‖ + ‖y‖

3. ‖x‖ = 0 ⇐⇒ x = 0

In the following Vi will denote normed vector spaces, i.e. vector spaces
with a norm.

Definition A.3.3 A sequence (fk) is called linearly independent , if for
all linear combinations, that are zero, the coefficients are zero.

0 =
∑

k∈Kf

ckfk, Kf finite =⇒ ck = 0 ∀k ∈ Kf

The span of a sequence of elements (fk)
N
k= in V is

span(fk) =

{
f

∣∣∣∣∣∃(ck) ⊆ CN : f =
N∑

k=0

ckfk

}

A sequence {fk} is called a (finite) basis for V if it spans V and is linearly
independent.

We will sometimes use the canonical basis elements δk = (0, . . . , 0,

k︷︸︸︷
1 , 0, . . . , 0).

This can be seen as a Kronecker symbol:

δi,j =

{
1 i = j
0 otherwise

This can also be defined for infinite dimensional spaces. A periodization
leads to the Shah symbol

XM(j) =
∑

k

δj,k·M .
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A.3.2 Inner Product

Definition A.3.4 We call a function 〈., .〉 : V × V → K inner product, if
and only if for all x, y ∈ V

1. x 7→ 〈x, y〉 is linear ,

2. 〈x, y〉 = 〈y, x〉,

3. 〈x, x〉 ≥ 0

4. 〈x, x〉 = 0 ⇐⇒ x = 0.

Every inner product induces a norm by ‖x‖V =
√
〈x, x〉.

Theorem A.3.1 (Cauchy-Schwarz Inequality) For all x, y ∈ V we have

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉

Especially important for applications (e.g., acoustics) are finite-dimensional
spaces. We regard discrete signals x = (x0, x1, . . . , xn−1) ∈ Cn as row vectors.
On this vector space we have a (Euclidean) norm ‖x‖ which is induced by

the scalar product 〈x, y〉 =
n−1∑
i=0

xiyi.

A.3.3 Norms in Cn

Apart from the Euclidean norm we can define

Definition A.3.5 On Cn let

‖x‖p = p

√√√√
n−1∑

i=0

|xi|p

be the p-norm and

‖x‖∞ =
n−1
max
i=0

{|xi|}

the infinity norm.

The Euclidean norm, defined above, is clearly equivalent to the 2-norm.

Corollary A.3.2 (‖x‖ + ‖y‖)2 ≤ 2 ·
(
‖x‖2 + ‖y‖2)
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Proof:
(‖x‖ − ‖y‖)2 ≥ 0

and therefore
‖x‖2 + ‖y‖2 ≥ 2 · ‖x‖ ‖y‖

2

Clearly a similar argument can be used for

∥∥∥∥
∑
i∈I
xi

∥∥∥∥
2

≤ |I|∑i∈I ‖xi‖
2.

On finite-dimensional vector spaces all norms have to be equivalent, cf.
[129]:

Proposition A.3.3 In Cn we have

1.
‖x‖2 ≤ ‖x‖1 ≤

√
n ‖x‖2

2. for all 1 ≤ p ≤ ∞
‖x‖p ≤ ‖x‖1

and
‖x‖∞ ≤ ‖x‖p ≤ p

√
n ‖x‖∞

3. for 1 ≤ p ≤ q
‖x‖q ≤ ‖x‖p ≤ p

√
n ‖x‖q

A.3.4 Linear Functions

Definition A.3.6 A function O : V1 → V2 is called linear, if and only if

O(x+ y) = O(x) +O(y) and O(λ · x) = λ ·O(x)

for x, y ∈ V1 and λ ∈ C.
The class of all linear functions from V1 to V2 will be denoted by L(V1, V2)

and L(V1) = L(V1, V1).

Definition A.3.7 A function O : V1 → V2 between normed spaces is called
bounded, if and only if there exits an M > 0 such that

‖O(x)‖V2
≤M · ‖x‖V1

Definition A.3.8 The minimum of all M possible in the above inequality is
called the operator norm induced by the vector norms ‖.‖V!

and ‖.‖V2
:

‖O‖Op = sup
‖x‖V1

≤1

{
‖O(x)‖V2

}
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Definition A.3.9 1. The linear and bounded functions from V1 to V2

are called operators. The class of this functions will be denoted by
B(V1, V2)

2. The operators from V to K are called functionals. The class of this
functions will be denoted by V ′ and will be called the dual space.

Again we will use the notation B(V1) for B(V1, V2).

Theorem A.3.4 Let O : V1 → V2 be a linear operator. Then the following
properties are equivalent:

1. O is continuous

2. O is continuous in 0

3. O is bounded

4. O is uniformly continuous.

The dual space of a normed vector space is a normed vector space with
norm ‖x′‖

B′ = sup
‖x‖

B
≤1

{x′(x)}. But also the reverse is true:

Corollary A.3.5 ([129] III.1.7.)

‖x‖ = sup
‖x′‖=1

{|x′(x)|}

Definition A.3.10 Let O : V1 → V2 be an operator. Then the adjoint
operator is O∗ : V ′

2 → V ′
1 defined by

(O∗y′) (x) = y′ (Ox)

for x ∈ V1, y
′ ∈ V ′

2 .

Definition A.3.11 A function A is called isometry if ‖Ax‖ = ‖x‖

Lemma A.3.6 Let B ∈ B(V1, V2) and A ∈ B(V3, V1) a surjective isometry,
C ∈ B(V2, V3) an isometry, then

‖B‖Op = ‖B ◦ A‖Op = ‖C ◦B‖Op = ‖C ◦B ◦ A‖Op
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Proof:

‖B‖Op = sup
x∈X

{‖Bx‖H
‖x‖H

}
= sup

z∈Z′

{‖BAz‖H
‖Az‖H

}
=

= sup
z∈Z′

{‖BAz‖H
‖z‖H

}
= ‖BA‖Op

and

‖CB‖Op = sup
x∈X

{‖CBx‖H
‖x‖H

}
= sup

x∈X

{‖Bx‖H
‖x‖H

}
= ‖B‖Op

2

A.3.5 Matrices

Every linear operator A : Cn → Cm can be identified with a matrix. Respec-
tively the action of every operator corresponds to a matrix vector multipli-
cation:

A(x) = x · A =
n∑

j=0

ai,jxi,

where A = (ai,j)m,n is an m × n matrix, A ∈ Mm,n. The notation AT will

signify the transpose of the matrix A:
(
AT
)
i,j

= Aj,i. The adjoint of a matrix

A is A∗ = AT .
There are nice ways to interpret the matrix multiplication respectively

the matrix-vector multiplication:

Lemma A.3.7

T ·


 g1 g2 . . . gM


 =


 Tg1 Tg2 . . . T gM





 g1 g2 . . . gM


 ·




c1
c2
...
cM


 =

M∑

m=1

cmgm







— h1 —

— h2 —
...

...

— hN —


 ·


 g1 g2 . . . gM






m,n

= 〈gn, hm〉
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For any matrix M let us use the notation Mi for the ith columns, M (j)

the j-the row and Mi,j the entry at the i-th row and j-th column. Note
that Mi = M · δi.

For v ∈ CL let M = diag(v) be the diagonal matrix, for which Mi,j =
δi,jvi. . For M ∈ Mn,n let d = diag(M) be the diagonal of M , di = Mi,i.
These are clearly linear operators.

A.3.5.1 Matrix Norms And Spaces

Definition A.3.12 Let A be an m by n matrix, then

‖A‖Op = sup
x∈Cn:‖x‖=1

{‖A · x‖}

is the (induced) operator norm. Also,

‖A‖fro =

√√√√
n−1∑

i=0

m−1∑

j=0

|ai,j|2

is the Frobenius or Hilbert Schmidt norm.

The Frobenius norm can be defined by the Hilbert-Schmidt inner product,
‖A‖fro = 〈A,A〉HS, where

〈A,B〉HS =
m−1∑

i=0

n−1∑

j=0

ai,jbi,j

Together with this norm, the space of all m×n matrices Mm,n forms a Hilbert
space. This provides us with a number of Hilbert space tools like orthonormal
bases and the uniqueness of the best approximation on subspaces. The space
Mm,n is isomorphic to Cm·n (for example by writing the columns one below
each other, i.e. using vec(n) from Lemma 1.2.25), in this case, the Hilbert-
Schmidt inner product coincides with the ordinary scalar product, see Lemma
1.2.25), such that

〈M,S〉HS =
n−1∑

k=0

〈Mk, Sk〉Cm =

=
〈
vec(m)(M), vec(m)(S)

〉
Cm×n =

L−1∑

p=0

L−1∑

q=0

Mp,q · Sp,q

where we define M(k) as the k-th column of a matrix M .
For this inner product a lot of nice properties are valid, like
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Proposition A.3.8 For m× n matrices A,B,X

• 〈XA,B〉HS = 〈A,X∗B〉HS
• 〈AX,B〉HS = 〈A,BX∗〉HS

This can be proved just as in the continuous case, see [110].

We find a generalization of the Hilbert Schmidt norm by

Definition A.3.13 Let A be an m by n matrix, then for 1 ≤ p, q <∞

‖A‖p,q =



m−1∑

j=0

(
n−1∑

i=0

|ai,j|p
) q

p




1
q

is called the mixed norm. The definition above extends in a natural way
to p = ∞ as follows:

‖A‖∞,p =

(
n−1∑

j=0

(
max

i=0,...,n−1
{|ai,j|}

)p) 1
p

This can be extended to infinite matrices to get the matrix space lp,q and
weights to get lp,qm , ‖M‖lp,q

m
= ‖m ·M‖lp,q .

A.3.5.2 Spectral Radius

For details in this section see [87] or [123].

Definition A.3.14 1. A complex number λ is called eigenvalue of the
matrix A if there is a vector x, called eigenvector , such that

Ax = λx

2. The set
σ(A) = {λ |λ is eigenvalue of A}

is called the spectrum.

3. The number
ρ(A) = max {|λ| , λ ∈ σ(A)}

is called the spectral radius .

Theorem A.3.9 Let A be a m× n matrix, then
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1. ‖A‖Op =
√
ρ (A ∗ A)

2. ρ (A) ≤ ‖A‖Op
3. ρ (A) = ‖A‖Op for A self-adjoint.

4. ρ (A) = lim
n→∞

‖An‖1/n
Op (spectral radius formula) .

This is true also for operator norms induced by other vector norms, e.g.

‖x‖1 =
n−1∑
i=0

|xi| or ‖x‖∞ = max
i=0,...,n−1

|xi|.

A.3.6 Discrete Fourier Transformation

For details on the discrete Fourier transformation, see for example [97] or
[75].

Definition A.3.15 Let FL be the L× L matrix with entries (FL)j,k = ω−jk
L

with ωL = e
2πi
L . We call FL the Fourier or FFT-matrix. We will write x̂

for FL · x.

Theorem A.3.10 ([23] Theorem 1.4.1) The vectors fk(l) = 1√
L
ωk·lL consti-

tute an orthonormal basis for CL.

It can be shown [123] that Fl is unitary matrix and so is just a change
of basis. With the above theorem we have all the results for ONBs, Section
A.4.3.2, like the Parseval or Plancherel theorems, where it is important to
remember the normalization factor 1√

L
.

A.3.6.1 Convolution

The convolution of two vectors in Cn is defined by

(x ∗ y)k =
n−1∑

i=0

xi · yk−i

the convolution of two m× n matrices by

(A ∗B)k,l =
m−1∑

i1=0

n−1∑

i2=0

Ai1,i2 ·Bk−i1,l−i2
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As we regard vectors as well as columns and rows of matrices as periodic,
this is a cyclic convolution.

The convolution of two vectors corresponds to the pointwise multiplica-
tion of their Fourier transformation

x̂ ∗ y = ŷ · x̂
For a similar result for matrices see Lemma 3.2.9.

A.3.6.2 Poisson Theorem

The discrete version of the Poisson Theorem A.4.50 can be written

Theorem A.3.11 For g ∈ CL we have for l = 0, . . . , a− 1

̂(
L−1∑

k=0

Tkag

)

l

= (ĝ)l·L
a

with the left Fourier transformation in Ca, the right in CL.

A.3.7 Kronecker product

Definition A.3.16 Let A be a p×q, B a r×s matrix. Then the Kronecker
product of A and B is the p · r × q · s matrix C with

Ci,j = a⌊ i
r⌋,⌊ j

s⌋ · bi mod r ,j mod s

A⊗B =




a0,0B a1,0B . . . ap−1,0B
a0,1B a1,1B . . . an−1,1B

...
...

...
...

a0,q−1B a1,q−1B . . . ap−1,q−1B




Proposition A.3.12 Properties:

• (A⊗B) ⊗ C = A⊗ (B ⊗ C)

• (A+B) ⊗ C = A⊗ C +B ⊗ C

• (A⊗B)∗ = A∗ ⊗B∗

• (A⊗B) · (C ⊗D) = (A · C) ⊗ (B ·D).

• (A⊗B)−1 = A−1 ⊗B−1

This can be shown directly or see e.g. [83].
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A.3.8 Hadamard product

We will sometimes use the pointwise product of two matrices. We will use
the following notation

Definition A.3.17 Let A and B be two m× n matrices, then

(A⊙B)i,j = Ai,j ·Bi,j

A.4 Functional analysis

For details, see e.g. [129] or [26].

A.4.1 Functions

Definition A.4.1 Let f : V1 → V2 be a function. Then

1. The kernel or null-space of f is

ker(f) = {x ∈ V1 |f(x) = 0}

2. The range of f is

ran(f) = {y ∈ V2 |∃x : f(x) = y}

Definition A.4.2 The support of a function f between topological vector
spaces is

supp(f) = {x |f(x) 6= 0}

A.4.2 Banach spaces

Definition A.4.3 A vector space V is called complete, if every Cauchy
sequence converges, i.e. for every sequence (xn)

‖xn − xm‖V → 0 for n,m→ ∞ =⇒ ∃x : ‖xn − x‖V → 0 for n→ ∞

A complete normed vector space (B, ‖.‖) is called a Banach space.

Let in the following Bi be complex Banach spaces.

Proposition A.4.1 Let V be a normed vector space and B a Banach space,
then B(V,B) is complete. As every finite-dimensional space is complete, V ′

is complete.
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A.4.2.1 Unconditional Convergence

Definition A.4.4 Let (fk)k∈K be a countable set in B. The series
∑
k∈K

fk is

said to converge unconditionally to f ∈ B, if for all ǫ > 0 there exists a
finite set F0 ⊆ K such that

∥∥∥∥∥f −
∑

k∈F
fk

∥∥∥∥∥
B

< ǫ for all finite sets F ⊇ F0

A more intuitive interpretation of unconditional convergence is conver-
gence independent of permutation, which can be seen from the following
result:

Proposition A.4.2 ([63] Proposition 5.3.1 ) Let (fk)k∈K be a countable set
in B. Then the following properties are equivalent:

1. f =
∑
k∈F

fk converges unconditionally

2. For every enumeration π : N → K the sequence of partial sums
N∑
k=1

fπ(k)

converges to f.

So the limit f is independent of the enumeration π.

Lemma A.4.3 ([63] Lemma 5.3.3 ) Suppose that
∑
k,l

fk,l converges uncondi-

tionally to f ∈ B. Then the inner partial sum sk,N =
∑

|l|≤N
fk,l converges to

an element gk ∈ B for each k and f =
∑
k

gk. Likewise
∑

|k|≤M
fk,l converges to

an element hl ∈ B for each k and f =
∑
l

hl.

Thus the order of summation can be interchanged in the double sum.

A.4.2.2 Bases In Banach Spaces

Definition A.4.5 A sequence (fk) ⊆ B is called complete or total in B

if span{fk} = B.

For infinite-dimensional space it is important to note that the set

”span∞(fk)” :=

=

{
f = lim

n→∞

∑

k∈Kn

ckfk |K1 ⊆ . . . ⊆ Kn ⊆ . . . ⊆ K with |Kn| ≤ n, ck ∈ K

}
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is in general not identical to span(fk). An important question is, which
sequence nevertheless have this property.

Definition A.4.6 A sequence (ek) is called a (Schauder) basis for the
Banach space B, if for each f ∈ B there are unique scalar coefficients ck(f),
such that

f =
∑

k

ck(f)ek

Apart from the linear independence for infinite-dimensional spaces other
definitions of the ”independence” of sequences make sense:

Definition A.4.7 1. (fk) is called ω-independent if whenever
∑
K

ckfk

is convergent and equal to zero then ck = 0 for all k ∈ K.

2. (fk) is minimal if fj 6∈ span{fk}k 6=j for all j ∈ K.

These concepts are connected by the following chain, see [23]

minimal =⇒ ω-independent =⇒ linearly independent.

A.4.2.3 Operators In Banach Spaces

Proposition A.4.4 ([129] II.1.5) Let D ⊆ B1 be a dense subspace, and
T ∈ B(D,B2). Then there exists a uniquely defined operator T̃ ∈ B(B1,B2),

such that T̃|D = T and ‖T‖Op =
∥∥∥T̃
∥∥∥
Op

.

The dual space of a Banach space is always also a Banach space with
norm ‖x′‖

B′ = sup
‖x‖

B

{x′(x)}.

Definition A.4.8 An operator ∈ B(B1,B2) is called an isomorphism if it
bijective and has a bounded inverse.

It is clear that isomorphisms are exactly those surjective operators C for
which

A · ‖f‖H ≤ ‖C(f)‖2 ≤ B · ‖f‖H
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A.4.2.4 Open Mapping Theorem

Theorem A.4.5 (Open Mapping Theorem) Let B1 and B2 be Banach spaces
and let T : B1 → B2 be linear, bounded and surjective. Then T is an open
mapping, i.e. mapping open sets to open sets.

A direct consequence is the following corollary

Corollary A.4.6 [129] IV.3.6 Let T : B1 → B2 be a bounded linear injective
map between Banach spaces. T−1 : ran(T ) → B1 is continuous if and only
if ran(T ) is closed.

As a simple consequence the converse is true:

Corollary A.4.7 T ∈ B(X,Y ), X, Y Banach spaces. T is injective (one-
to-one) and has closed range if and only if there exists number c > 0 such
that there exists number c > 0 such that

‖x‖ ≤ c · ‖Tx‖ ∀x ∈ X

Proof: Injective and closed range
A.4.6⇐⇒

∃B :
∥∥T−1y

∥∥ ≤ B · ‖y‖ ∀y ∈ ran(T ) ⇐⇒

∃B : ‖x‖ ≤ B · ‖Tx‖ ∀x ∈ X

2

It can be shown that injective bounded operators map minimal sets to
minimal sets. (Use A.4.7 and suppose the converse.) But contrary to the
finite dimensional case that does not mean, that the function is necessarily
surjective, as can be seen in the next example.

Example A.4.1 :

Let rS : l1 → l1 be the right shift, meaning rS(c1, c2, c3, ....) = (0, c1, c2, ...).
This is an isometry (and so injective and bounded) but not surjective.

Let C : l1 → l1 defined by C(x) = y with yk = xk

k
. Then C is linear, injec-

tive and bounded (with bound π√
6
). But the inverse is clearly not bounded.

So this injective, bounded operator does not have a closed range.

Let X be a Banach space and U ⊆ X, V ⊆ X ′, then U⊥ := {x′ ∈ X ′ :
x′(x) = 0 ∀ x ∈ U} and V⊥ := {x ∈ X : x′(x) = 0 ∀ x′ ∈ V }
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Theorem A.4.8 [129] IV.5.1 Let T ∈ B(X,Y ). Then the following state-
ments are equivalent

• ran(T ) is closed

• ran(T ) = ker(T ∗)⊥

• ran(T ∗) is closed

• ran(T ∗) = ker(T )⊥.

One part of this is also know as the Closed Range Theorem : Let T be
bounded. Then T has closed range if and only if T ∗ does.

Proposition A.4.9 ([23] A.5.3. )If U : B1 → B2 is bounded and ‖I − U‖Op <
1, then U is invertible and

U−1 =
∞∑

k=0

(I − U)k

Furthermore ‖U−1‖Op ≤ 1
1−‖I−U‖Op

.

Initialization:
x0 = g, h0 = g, A = Id− S

Iteration :

• Set hk+1 = Ahk;

• Set xk+1 = xk + hk+1;

• Check exit condition ‖xk+1 − xk‖ < ǫ.

Figure A.1: The Neumann algorithm

A.4.2.5 Banach Algebra

For detail see e.g. [102].

Definition A.4.9 A Banach space B for which a binary operation · : B × B → B

is defined, such that for all λ ∈ K and x, y, z ∈ B

1. (a) x · (y · z) = (x · y) ż
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(b) (x+ y) z = x · z + y · z
(c) x (y + z) = x · y + x · z
(d) λ · (x · y) = (λ · x) · y = x · (λ · y)

2. ‖x · y‖
B
≤ ‖x‖

B
· ‖y‖

B

is called a Banach algebra.

This can be seen in the following way: A Banach algebra is a Banach space
that is also an algebra with unity, that ”respects” the norm.

Definition A.4.10 A function between Banach algebras ϕ : B1 → B2 is
called a Banach algebra homomorphism, if

1. ϕ is linear and

2. for all x, y ∈ B1 we have ϕ(x · y) = ϕ(x) · ϕ(y).

It is called a monomorphism, if it is injective also.

A.4.3 Hilbert Spaces

Definition A.4.11 A complete vector space with inner product (H, 〈., .〉) is
called a Hilbert space.

Let in the following Hi be complex Hilbert spaces.

A.4.3.1 Bases in Hilbert spaces

Definition A.4.12 Two sequences (gk), (fk) in a Hilbert space are called
biorthogonal if

〈gk, hj〉 = δkj

Lemma A.4.10 ([23] Lemma 3.3.1) Let (fk)k∈K be a sequence in H. Then

1. if and only if there is biorthogonal sequence (gk)k∈K, then (fk) is min-
imal.

2. if (fk) has a biorthogonal sequence, then it is unique if and only if (fk)
is a total.
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A.4.3.2 ONBs

Definition A.4.13 1. A sequence (ek)k∈K ⊆ H is called orthonormal,
if it is biorthogonal to itself, i.e.

〈ek, ej〉 = δk,j for all k, j ∈ K

2. A orthonormal basis is a sequence, that is a basis and orthonormal.

Theorem A.4.11 ([23] 3.4.2)For an orthonormal sequence (ek)k∈K ⊆ H the
following properties are equivalent:

1. (ek) is an ONB

2. For all f ∈ H
f =

∑

k∈K
〈f, ek〉 ek

3. For all f, g ∈ H
〈f, g〉 =

∑

k∈K
〈f, ek〉 〈g, ek〉

4. For all f ∈ H
‖f‖2

H =
∑

k∈K
|〈f, ek〉|2

5. (ek) is complete

6. If 〈f, ek〉 = 0 for all k ∈ K, then f = 0.

Theorem A.4.11 3.) is known as Plancherel’s theorem. Theorem A.4.11
4.) is known as Parseval’s theorem.

A.4.3.3 Operators In Hilbert Spaces

Every functional of a Hilbert space can be represented by an inner product:

Theorem A.4.12 (Riesz’ representation theorem, [26] Ch. 3, 3.4.)Let F ∈
B(H,K), then there is a unique f0 such that

F (x) = 〈x, f0〉

for every x ∈ H. Moreover ‖F‖Op = ‖f0‖H.

So Corollary A.3.5 can be restated in Hilbert spaces:
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Corollary A.4.13
‖x‖ = sup

‖y‖=1

{|〈x, y〉|}

Proof: See [129]. It is also easy to show directly: Let c = sup
‖y‖=1

{|〈x, y〉|}

On one hand c ≤ ‖x‖ because c = sup
‖y‖=1

{|〈x, y〉|}
C.S.

≤ ‖x‖. On the other

hand set y = x
‖x‖ . 2

Definition A.4.14 Let O be an operator H1 → H2, then we called the
uniquely defined operator O∗ for which for all x, y ∈ H1

〈Ox, y〉 = 〈x,O∗y〉

the adjoint operator.

This is exactly the same adjoint operator defined in Section A.3.4 .

Definition A.4.15 An operator T ∈ B(H1,H2) is called

1. unitary, if T is invertible, and T−1 = T ∗.

2. self-adjoint, if H1 = H2 and T = T ∗.

3. normal, if T ∗T = TT ∗.

Proposition A.4.14 ([129] V.5.2. (f)) For A ∈ B(H1,H2) we have A∗ ∈
B(H2,H1) and ‖A∗‖ = ‖A‖ and ‖AA∗‖ = ‖A‖2.

Proposition A.4.15 ([129] V.5.7) ‖T‖Op = sup
‖f‖

H
≤1

|〈Tf, f〉| for self-adjoint

operators T ∈ B(H1,H2).

Lemma A.4.16 [129] Let T ∈ B(H1,H2). Then all the following statements
are true

• ran(T ) = ker(T ∗)⊥. So T is injective if and only if T ∗ has dense range.

• ran(T ∗) = ker(T )⊥. So T ∗ is injective if and only if T has dense range.

• ran(T )⊥ = ker(T ∗).

• ran(T ∗)⊥ = ker(T ).
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So from this we know that ran(T ) ⊆ ker(T ∗)⊥, so to prove that T has a
closed range, it is enough to show that ker(T ∗)⊥ ⊆ ran(T ) (following A.4.8)
or the same with switched roles.

Proposition A.4.17 [26] Let A ∈ B(H1,H2). Then

〈Af, f〉 = 0 ∀f ∈ H1 =⇒ A = 0.

Definition A.4.16 An operator T ∈ B(H1,H2) is called positive, if for all
x ∈ H1, x 6= 0

〈Tx, x〉 > 0

Proposition A.4.18 If A is a positive operator, then A is injective.

Proof: 〈Ac, c〉 > 0 ∀c 6= 0 ⇒ (Ac = 0 ⇒ c = 0) 2

In the finite dimensional case this already means that the matrix is in-
vertible.

We know, [129] V.5.6, that an operator is self-adjoint if and only if
< Tx, x >∈ R. This also means that every positive Operator is self-adjoint.

A.4.3.4 Matrix Representation Of Operators

Let us call elements of l∞(Z2) infinite matrices. Define the action of such a
matrix M on lp formally as

(Mc)j =
∑

k

Mj,kck (A.1)

for c ∈ lp. The sum is given formally as we don’t know if it converges.
If for two matrices M,N the sum in Equation A.1 converges uncondition-

ally for all c ∈ lp, then this is also true for M ◦ N and the matrix of this
operator is just the product of the two matrices with the well-known matrix
multiplication. If the matrix M induces an operator we will denote that by
O(M).

Every linear, bounded operator A : H1 → H2 can be written as an infinite
matrix with the entries aij = 〈Aei, fj〉 with (ei) and ONB in H1 and (fl) in

H2. Then Af =
∑
k

(
∑
j

ai,j 〈f, ẽj〉
)
fi. The matrix M is clearly in l∞,∞ as

|〈Aei, fj〉| ≤ ‖A‖Op. We denote M = M(A).
See Section 1.1.7.3 for an extension to frames.

For the opposite direction we can state Schur’s lemma:
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Lemma A.4.19 ( [63] 6.2.1 ) Let A = (aij) be an infinite matrix with

sup
j

∑

k

|ajk| ≤ K1

sup
k

∑

j

|ajk| ≤ K2

Then the operator defined by this matrix is bounded from lp to lp

An equivalent lemma is possible for integral operators. If the matrix is
self-adjoint, clearly one of the above conditions suffices.

A.4.3.5 Multipliers

Let us collect the result for this special class of operators, connected to the
main subject of this work:

Theorem A.4.20 ([26] Ch. II 1.5 Theorem) Let φ ∈ L∞(Kd), define Mφ :
L2(Kd) → L2(Kd) by Mφ(f) = φ · f . Then Mφ is bounded and linear and
‖Mφ‖ = ‖φ‖∞.

This is valid for all Lp with 1 ≤ p ≤ ∞. If 1 ≤ p <∞ and 1/p+ 1/p′ = 1
then M∗

φ : Lp
′ → Lp

′

and Mφ = M∗
φ

The following statement can also be found in the same book[26]:

• M2
φ = Mφ ⇐⇒ φ is a characteristic function χA.

• Let {an} be a sequence, A : l2 → l2 is bounded if and only if {an} is
uniformly bounded. (Then ‖A‖ = ‖{an}‖∞.)

• No nonzero multiplication operator is compact on L2(0, 1).

Theorem A.4.21 ([26] Ch. II 4.6 Theorem) If N is a normal operator on
H, then there is a measure space (X,Ω, µ) and a function φ ∈ L∞(X,Ω, µ)
such that N is unitarily equivalent to Mφ on L2(X,Ω, µ).

A.4.4 Tensor Products

From algebra [76] we know that

Definition A.4.17 Let X,Y, Z be modules over a ring R, then a function
⊗ : X × Y → Z is called tensor product, if it is bilinear , meaning for
∀a, b ∈ X, ∀c, d ∈ Y and ∀λ ∈ R

(a+ b) ⊗ c = a⊗ c+ b⊗ c
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a⊗ (c+ d) = a⊗ c+ a⊗ d

(λ · a) ⊗ c = a⊗ (λ · c) = λ · (a⊗ c)

We can also find tensor products by defining the free product of two mod-
ules and the defining a relation which corresponds to the bilinear properties
above.

Some properties can be stated for vector spaces V (without topology) see
[76]:

Proposition A.4.22 Let y1, .., yn ∈ V linearly independent, then (xi⊗yi) =
0 =⇒ xi = 0 i = 1..n.

Let (xi), (yi) be bases for V1 resp. V2 then xi ⊗ yi bases for V1 × V2.

The Kronecker product for matrices defined in Section A.3.7 is an example
for a tensor product.

A.4.4.1 The ”Outer” Tensor Product

We will get to know a couple of tensor products, one of them is

Definition A.4.18 Let X,Y, Z be sets, f : X → Z,g : Y → Z be functions.
Then define the Kronecker product ⊗X×Y : X × Y → Z by

f ⊗X×Y g(x, y) = f(x) · g(y)
We will often write f ⊗ g instead of f ⊗X×Y g, if there is no chance of
misinterpretation. Although in most cases it should be apparent, which
tensor product is meant, we have to give a (rather arbitrary) name to the
different tensor products, so we call that the outer tensor product. It is easy
to prove that this is a tensor product.

A.4.4.2 The ”Inner” Tensor Product

Definition A.4.19 Let f ∈ H1, g ∈ H2 then define the rank-one operator
- or inner tensor product as a function from H2 to H1 by

(f ⊗H g) (h) = 〈h, g〉 f

We will often write f ⊗ g instead of f ⊗H g if the meaning is clear. We
call that the inner tensor product as a inner product is involved and also two
elements of the same space are used.

For this operator we know
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Lemma A.4.23 ([110] I.1. Lemma 1) The tensor product of two elements
f ∈ H1 and g ∈ H2 is in B(H2,H1) with ‖f ⊗ g‖ = ‖f‖H1

· ‖g‖H2
. Its range

is of dimension 1 or 0 (and it’s therefore compact).

Clearly these tensor products are exactly the rank one (and zero) opera-
tors on Hilbert spaces.

Furthermore we know and it’s easy to prove

Lemma A.4.24 ([110] I.1. Lemma 2)

1. This product is a tensor product (it’s bilinear).

2. (f ⊗H g)
∗ =

(
g ⊗H f

)

3. (f ⊗H g) (f ′ ⊗H g
′) = 〈f ′, g〉 (f ⊗H g

′)

4. A ◦ (f ⊗H g) = ((Af) ⊗H g)

5. (f ⊗H g) ◦ A =
(
f ⊗H

(
A∗g

))

We will see in A.4.5.4 a connection between these two tensor products on
special function spaces.

It is easy to show:

Lemma A.4.25 Let f, g ∈ H. Then f ⊗ g is a projection if 〈f, g〉H = 1.

A.4.5 Compact Operators

A.4.5.1 Compact Operators In Banach Spaces

Definition A.4.20 T ∈ L(B1,B2) is called compact, if T (B1) is compact
with B1 = {x ∈ B1 |‖x‖B

≤ 1}. The set of all these functions will be denote
by K(B1,B2).

Again we use the notation K(B1) = K(B1,B1).

Theorem A.4.26 ([129] II.3.2)K(B1,B2) is a closed subspace of B(B1,B2).
K(B1,B2) is therefore a Banach space.

Let B3 be also a Banach space. If T ∈ B(B1,B2) and S ∈ B(B2,B3)
and either T or S compact, then S ◦ T is compact.

A function f is called to have finite rank , if ran(f) is finite dimensional.

Corollary A.4.27 Let T ∈ B(B1,B2). If there exist Tn ∈ BL(B1,B2) with
finite rank, such that ‖Tn − T‖Op → 0 for n→ ∞, T is compact.
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Definition A.4.21 Let T ∈ L(B1), then

1. the set
σ(T ) = {λ ∈ K |(λ · Id− T ) is not invertible }

is called the spectrum of T .

2. A number λ ∈ σ(T ) is called eigenvalue and x ∈ B1 is called eigen-
vector, if

Tx = λ · x

Theorem A.4.28 ([129] VI 2.5) Let T ∈ K(B1), then

1. If B1 has infinite dimension, 0 ∈ σ(T )

2. Every λ ∈ σ(T )\{0} is an eigenvalue.

Therefore for infinite-dimensional space, the identity Id can not be com-
pact, as it is clearly invertible. This means that on infinite-dimensional space
no compact operator can be invertible.

Corollary A.4.29 [110] Two compact operators S, T ∈ B(B1) commute if
and only if there is a basis for B1 consisting of eigenvectors of both.

A.4.5.2 Compact Operators On Hilbert Spaces

Different to the situation in Banach spaces, in Hilbert spaces the compact
operators are exactly those, that are limit of finite ranks operators:

Corollary A.4.30 [26] Let T ∈ B(H1,H2). If and only there exist Tn ∈
BL(H1,H2) with finite rank, such that ‖Tn − T‖Op → 0 for n → ∞, T is
compact.

The well-known spectral theorem for normal compact operator says, in
the terminology used in the main part of this work, that such operators can
be represented as multiplier of an ONB. Remember that we use K = C.

Theorem A.4.31 ([129] Vi. 3.2)Let T ∈ K(H1) be normal. Then there is
a ONB (ek) ⊆ H! and a sequence (λk) ⊆ C\{0} such that

Tx =
∑

k

λk 〈x, ek〉 · ek

where the ek are eigenvectors of T for the eigenvalues λk. {λk} = σ(T )\{0}.

This can be extended to the class of all compact operators:
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Theorem A.4.32 Let T ∈ K(H1,H2). Then there exists an orthonormal
sequences (ei) ⊆ H1 and (fi) ⊆ H2 and numbers s1 ≥ s2 ≥ . . . ≥ 0 with
si → 0 for i→ ∞ such that for all x ∈ H1

Tx =
∑

i

si 〈x, ei〉 fi

The numbers s2
i are the eigenvalues of T ∗T .

The numbers sk are called singular values. The finite matrix version of this
theorem is therefore called the singular value decomposition.

A spectral theorem is also true for possibly non-compact self-adjoint op-
erators.

Theorem A.4.33 ([129] VII.1.21) Every self-adjoint operator on a Hilbert-
space is unitarily equivalent to a multiplication operator. More precisely: For
every T ∈ B(H1) there exists a measure space (Ω, µ), a bounded, measurable
function λ : Ω → R and a unitary operator U : H1 → L2(Ω, µ) such that

(UTU∗)ϕ = λ · ϕ

nearly µ−everywhere for all ϕ ∈ L2(Ω, µ).

This can be used to define a functional calculus on the operators in B(H1)
by

(Uf(T )U∗)ϕ = f(λ) · ϕ
for bounded measurable functions f , see also [26].

Definition A.4.22 For an operator T : B1 → B2 let [T ] = (TT ∗)
1
2 .

Sometimes this operator is denoted by |T |, we have decided to stick to the
notation introduced by [110].

A.4.5.3 Trace class operators

For more detail on this class of compact operators refer to [110] or [129].

Definition A.4.23 Let B1,B2 be Banach spaces. An operator T ∈ L(B1,B2)
is called trace class (or nuclear) if there exist sequences (x′n) ∈ B′

1 and
(yn) ∈ B2 with

∞∑

n=1

‖x′n‖B′
1
‖yn‖B2

<∞
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such that for all x ∈ B1

Tx =
∞∑

n=1

x′n(x)yn ∀ x ∈ X

Let N (B1,B2) be the set of all trace class operators.

For Hilbert spaces this means due to the Riesz representation theorem,
that T is a trace class operator, if there exist sequences (xn) ∈ H1 and
(yn) ∈ H2 with

∞∑

n=1

‖xn‖H1
‖yn‖H2

<∞

such that

Tx =
∞∑

n=1

〈x, yn〉xn =
∞∑

n=1

xn ⊗ yn ∀ x ∈ H1

The class N (B1,B2) is a Banach space with the following norm

Definition A.4.24 For T ∈ N (B1,B2) like in the definition above let

‖T‖trace = inf
∞∑

n=1

‖xn‖B′
1
‖yn‖B2

be the nuclear or trace class norm.

The trace class operators are an operator ideal:

Proposition A.4.34 ([129] VI.5.4) Let N ∈ N (B1,B2), S ∈ B(B2,B3)
and T ∈ B(B0,B1) then S ◦N ◦ T ∈ N (B0,B3) with

‖SNT‖trace ≤ ‖S‖Op ‖N‖trace ‖T‖Op .

For Hilbert-space it is known, cf. [110], that trace-class operators are
compact. We can find equivalence conditions, when a compact operator is
trace-class:

Corollary A.4.35 Let N ∈ K(H1).

N ∈ N (H1) ⇐⇒
∑

si <∞,

where the si are the singular values for N .

Is can be shown that the sum of the singular values is equal to the fol-
lowing sum:
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Definition A.4.25 For N ∈ K(H1) then let

tr(N) =
∑

i

〈Nei, ei〉

be the trace of N .

The trace class operators are exactly the class of operators for which the
trace is defined.

This can be written in a different form :

Lemma A.4.36 Let T ∈ N(H1,H2). Then there exist sequences (yn), (xn)
such that

tr(T ) =
∑

n

〈yn, xn〉

This sequences coincide with the sequences from the remark following defini-
tion A.4.23.

Proof: Following the remark after definition A.4.23 there are sequences
such that

Tx =
∞∑

n=1

〈x, xn〉 yn ∀ x ∈ X

So let (ek) be an ONB

tr(T ) =
∑

i

〈Tei, ei〉 =
∑

i

〈 ∞∑

n=1

〈ei, xn〉 yn, ei
〉

=

=
∑

i

∞∑

n=1

〈ei, xn〉 〈yn, ei〉 =
∞∑

n=1

〈yn, xn〉

2

So it is clear that the tensor product f ⊗ g is a trace class operator as

tr(f ⊗ g) =
∑

i

〈(f ⊗ g) ei, ei〉 =
∑

i

〈
ei, f

〉
〈g, ei〉 = 〈f, g〉 <∞.

The trace-class norm can also be calculated by using the following result:

Lemma A.4.37 [110] Let T ∈ N(H1,H2) and let (ei) be any ONB of H1,
then

‖T‖trace =
∑

i

〈[T ] ei, ei〉
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Using the matrix representation of an operator with ONBs, Section A.4.3.4,
we get

tr(T ) = tr(M(T ))

and
tr(M) = tr(O(M))

A.4.5.4 Hilbert Schmidt operators

Definition A.4.26 Let H1,H2 be Hilbert spaces. A bounded operator T ∈
B(H1,H2) is called Hilbert Schmidt (HS) operator if there exists an ONB
{en} ⊆ H1 such that

‖T‖HS :=

√√√√
∞∑

n=1

‖Ten‖2
H <∞

Let HS(H1,H2) be the space of Hilbert Schmidt operators from H1 to H2.

This definition is independent of the choice of the ONB. The class of
Hilbert-Schmidt operators is a subclass of the compact operators, cf. [110].

Lemma A.4.38 [110] II.Lemma 2 & 3

• ‖T‖Op ≤ ‖T‖HS
• T ∈ HS ⇐⇒ T ∗ ∈ HS and ‖T‖HS = ‖T ∗‖HS.

• T ∈ HS and A ∈ B then TA and AT ∈ HS. ‖AT‖HS ≤ ‖A‖Op ‖T‖HS
and ‖TA‖HS ≤ ‖A‖Op ‖T‖HS.

• For all f, g ∈ H f ⊗ g ∈ HS and ‖f ⊗ g‖HS = ‖f‖H ‖g‖H.

• T ∈ HS ⇐⇒ [T ] ∈ HS. ‖T‖HS = ‖[T ]‖HS.

Definition A.4.27 For T, S ∈ HS and (ek) an ONB in H. Then let

〈T, S〉HS =
∑

k

〈Tek, Sek〉H

This definition is again independent on the chosen ONB.

Lemma A.4.39 [110] II Lemma 5 & 6

• 〈., .〉HS is an inner product.
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• HS is a Hilbert space with this inner product.

• 〈S∗, T ∗〉HS = 〈S, T 〉HS
• 〈XA,B〉HS = 〈A,X∗B〉HS
• 〈AX,B〉HS = 〈A,BX∗〉HS
•
〈
f ⊗ g, h⊗ l

〉
HS = 〈f, h〉H 〈l, g〉H

Corollary A.4.40 Let A ∈ HS, then

〈A, f ⊗ g〉HS = 〈Ag, f〉H

Proof:

〈f ⊗ g, A〉HS =
∑

k

〈(f ⊗ g) ek, Aek〉H =
∑

k

〈ek, g〉 〈f,Aek〉 =

=
∑

k

〈ek, g〉 〈A∗f, ek〉 = 〈A∗f, g〉

=⇒ 〈A, f ⊗ g〉HS = 〈f ⊗ g, A〉HS = 〈A∗f, g〉 = 〈g, A∗f〉 = 〈Ag, f〉
2

Theorem A.4.41 Let T be an operator from L2
(
Rd
)

to L2
(
Rd
)
. T is an in-

tegral operator with kernel in L2
(
Rd
)

if and only if it belongs to HS(L2
(
Rd
)
).

‖T‖HS = ‖κ(T )‖L2(Rd)

For d = 1 this result can be found in [110], for higher dimension for example
in [43].

This correspondence is even unitary as 〈S, T 〉HS = 〈κ(S), κ(T )〉L2(R2d),

cf. [134].

Lemma A.4.42

κ
(
g ⊗L2(Rd)×L2(Rd) h

)
= g ⊗L2(Rd) h
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L2
(
Rd
)
×L2

(
Rd
)������������������*

⊗

-

HS(L2
(
Rd
)
)

?

L2
(
R2d
)

⊗

κ

Figure A.2: Tensor product: Kernel of g ⊗ f .

Proof:

((
g ⊗ h

)
f
)
(x) = 〈f, h〉L2(Rd) g(x) =

(∫

Rd

f(y) · h(y)dy
)
· g(x) =

=

∫

Rd

(f(y) · g(x))︸ ︷︷ ︸
k(x,y)

·h(y)dy

2

This property is depicted in Figure A.2.
So overall we get for the rank one tensor product operators:

Corollary A.4.43

〈g ⊗ h, g′ ⊗ h′〉HS = 〈g ⊗ h, g′ ⊗ h′〉L2(R2d) = 〈g, g′〉L2(Rd) 〈h, h
′〉L2(Rd)

Using the matrix representation of an operator in Section A.4.3.4, we get

〈T, S〉HS = 〈M(T ),M(S)〉fro
and

〈M,N〉fro = 〈O(M),O(N)〉HS

A.4.6 Pseudoinverse Of An Operator

For more detail on this topic let us refer to [21].
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Lemma A.4.44 Let A ∈ B(H1,H2) with closed range. Then there exists a
bounded operator A† : H2 → H1 for which

AA†f = f,∀f ∈ ran(A)

Definition A.4.28 This A† is called the (Moore-Penrose) pseudoinverse
of A.

If A is invertible, A† = A−1. If U, V are invertible, then (UAV )† =
V −1A†U−1. But in general (A ◦B)† 6= B† ◦ A†. (Even in finite dimensional
spaces.)

Proposition A.4.45 ([23] A.7.2) Let T ∈ B(H1,H2) with closed range.
Then

1. The orthogonal projection of H1 onto ran(T ) is TT †

2. The orthogonal projection of H2 onto ran(T †) is T †T

3. T ∗ has closed range and (T ∗)† =
(
T †)∗.

4. On ran(T ) the operator T † is given by

T † = T ∗ (TT ∗)−1

Proposition A.4.46 ([23] Theorem A.7.3) Let U : K → H be a bounded
surjective operator. Given y ∈ H the equation Ux = y has a unique solution
of minimal norm, namely x = U †y.

Proposition A.4.47 ([21] Theorem 2.2)Let T : H1 → H2 and U : H2 → H1

bounded linear operators with closed ranges. Then

(U ◦ V )† = V †U † (A.2)

if and only if

1. U ◦ V has closed range

2. ran(U∗) is invariant under V V ∗ and

3. ran(U∗) ∩ ker(V ∗) is invariant under U∗U .

Even for matrices the simple equality A.2 is not true in general. But as
a corollary from A.4.47 we get

Corollary A.4.48 ([21] Corollary 2.3 )Let T : H1 → H2 be a linear bounded
operator with closed range. Then

(U∗ ◦ U)† = U †U∗†
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A.4.7 Fourier Transform

For details on this topic we refer for example to [75] or [63].

Definition A.4.29 Let f ∈ L1(Rd), then we define the Fourier transfor-
mation as

F (f) (ω) = f̂(ω) =

∫

Rd

f(t)e−2πiωtdt

For f ∈ L1(Rd) we have f̂ is uniformly continuous and vanishes at infinity.

Theorem A.4.49 (Plancherel) Let f ∈ L1 ∩ L2(Rd) then

‖f‖2 =
∥∥∥f̂
∥∥∥

2

Therefore F extends to a unitary operator on L2
(
Rd
)

and satisfies Parseval’s
formula :

〈f, g〉 =
〈
f̂ , ĝ
〉

for all f, g ∈ L2
(
Rd
)
.

Theorem A.4.50 (Poisson) Suppose that for some ǫ > 0 and C > 0 we

have |f(x)| ≤ C · (1 + |x|)−d−ǫ and
∣∣∣f̂(ω)

∣∣∣ ≤ C · (1 + |ω|)−d−ǫ. Then

∑

n∈Zd

f(x+ n) =
∑

n∈Zd

f̂(n)e2πin·x

pointwise for all x ∈ Rd and both sums converge absolutely.

A.4.7.1 Convolution

Definition A.4.30 For f, g ∈ L1(Rd) the convolution is defined as

(f ∗ g) (x) =

∫

Rd

f(y)g(x− y)dy

It satisfies
‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1 .

This definition is equivalent to

(f ∗ g) (x) = 〈f, Txg∗〉L2(Rd)

where both sides are defined, and g∗(x) = g(−x) is the involution of g. This
can be used to define the convolution in other spaces (including spaces of
measures or distributions).

Again it can be shown:
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Proposition A.4.51 Let f, g ∈ L1(Rd). Then

f̂ ∗ g = f̂ · ĝ

A.4.7.2 Derivatives

Let α be a so-called multi-index, i.e α ∈ Nd
0. Then we write |α| =

d∑
j=1

αj. For

ω ∈ Rd let ωα =
d∏
j=1

ω
αj

j .

Definition A.4.31 1. Dα =
d∏
j=1

δαj

δx
αj
j

the partial derivative operator.

2. Xαf(x) = xαf(x) the multiplication operator.

Then

1. (̂Dαf)(ω) = (2πiω)α f̂(ω)

2. ̂((−2πix)α f) = Dαf̂(ω)

if both sides of this equations are well defined. Written in operator notation
this is

1. FDα = (2πiω)|α|XαF

2. FXα =
(
i

2π

)|α|
DαF

A.5 Special Spaces

A.5.1 Spaces of sequences

Sequences in the field K can be seen as functions from the natural numbers
N into K. Let us denote that class by KN. Let us use the norms from Section
A.3.3 here, generalized in a natural way to this infinite-dimensional case. For
detail refer for example to [129].

We define special subclasses:

Definition A.5.1 Then we denote by

1. cc =
{
(cn) ⊆ KN : cn 6= 0 for only finitely many n

}
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2. c0 =
{

(cn) ⊆ KN : lim
n→∞

cn = 0
}

and

3. c =
{

(cn) ⊆ KN : ∃C : C = lim
n→∞

cn

}

All these sets are vector spaces with norm ‖.‖∞. c0 and c are Banach spaces,
cc is not closed.

Definition A.5.2 Let 1 ≤ p ≤ ∞. Then let

lp =
{
c ⊆ KN : ‖c‖p <∞

}

With the respective norms all these spaces are Banach spaces.
Following Section A.3.3 and using limit arguments we get for p > 2

‖(ck)‖∞ ≤ ‖(ck)‖p ≤ ‖(ck)‖2 ≤ ‖(ck)‖1

where some values might be ∞.
So these spaces are connected to each other:

cc ⊆ l1 ⊆ l2 ⊆ . . . ⊆ lp ⊆ . . . ⊆ c0 ⊆ c ⊆ l∞

These definitions can be extended to other countable index sets, when we
will use the notation cc(I), c0(I), c(I) and lp(I).

A.5.1.1 Hölder’s Inequality

Set formally ” 1
∞” = 0. A well known theorem, see e.g. [129] I.1.4, is

Theorem A.5.1 (Hölder’s Inequality) Let 1 ≤ p ≤ ∞. Let q ≥ 1 so, that
1
p

+ 1
q

= 1. Then for x ∈ lp, y ∈ lq

‖x · y‖1 ≤ ‖x‖p · ‖x‖q
We know that

cc ⊆ l1 ⊆ l2 ⊆ . . . ⊆ c0 ⊆ c ⊆ l∞

and so
lp · l1 ⊆ l1 for 1 ≤ p ≤ ∞.

For all p ≥ 1 the product l∞ · lp ⊆ lp, therefore lq · lp ⊆ lp for all p, q ≥ 1.
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A.5.2 Spaces of functions

Definition A.5.3 C(Rd) =
{
f : Rd → C |f continuous

}

For integration we use the Lebesque measure

Definition A.5.4 Let

1. Lp(Rd) =

{
f : Rd → C,measurable

∣∣∣∣∣
∫

Rd

|f(x)|p dx <∞
}

2. L∞(Rd) =

{
f : Rd → C,measurable

∣∣∣∣ ess sup
x∈Rd

{|f(x)|} <∞
}

These spaces are not considered as sets of functions, but of classes of func-
tions, which are identical nearly everywhere, i.e. f ≡Lp g ⇐⇒

∫

Rd

|f(x) − g(x)|p dx =

0.

Definition A.5.5 1. For any function space F (Rd) let F (Rd)b be F (Rd)b =
F (Rd)∩L∞(Rd), the bounded F (Rd) functions, using the induced norm.

2. For any function space F (Rd) let F (Rd)c be

F (Rd)c =
{
f ∈ F (Rd)

∣∣∃K ⊂⊂ Rd : supp(f) ⊆ K
}

the functions of F (Rd) with compact support, using the induced norm.

Analogous to the sequence spaces, if f ∈ L∞ and g ∈ Lp then f · g and
g · f ∈ Lp.

Example A.5.1 :

These examples can by investigated by using a computer algebra system like
e.g. MAPLE [88].

1. f(x) = sinc(x) is not in L1(R) but in L2(R).

2. f(x) =

{ √
1
x

|x| ≤ 9

0 otherwise
is not in Lp(R) for p > 1 or in L∞(R) but

in L1(Rd).
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3. f(x) =

{
q

√
1
x

|x| ≤ 9

0 otherwise
is certainly not in Lp(R) for p > q or in

L∞(R) but in Lp(R)d for p <= q.

Note, that the essential sup here is ∞.

4. 1 ∈ L∞(R) but clearly not in Lp(R).

5. f(x) =

{
x |x| ≤ 1
1
x

otherwise
is not in L1(R) but is in C0(R).

So all these functions spaces are different from each other.

Lemma A.5.2 1. Lp(Rd) is a Banach space for all 1 ≤ p ≤ ∞.

2. Cc(R
d) ⊆ C0(R

d) ⊆ Cb(R
d) ⊆ L∞(Rd).

3. Cb(R
d) and C0(R

d) are closed for ‖.‖∞ and therefore Banach spaces.

4. Cc(R
d) ⊆ C0(R

d) dense for ‖.‖∞
5. Cc(R

d) ⊆ Lp(Rd) dense for ‖.‖p

Like for sequence space also for function spaces a Hölder inequality holds:

Theorem A.5.3 1. Lp(Rd) · Lq(Rd) ⊆ L1(Rd) for 1
p

+ 1
q

= 1.

2. Especially L2(Rd) · L2(Rd) ⊆ L1(Rd)

For function spaces we can also defined ”local versions” of them

Definition A.5.6

Floc(R
d) =

{
f : Rd → C

∣∣∀K ⊂⊂ Rd ∃g ∈ F (Rd) : f |K = g|K
}

So e.g.

L1
loc =

{
f
∣∣∀K ⊂⊂ Rd : f ∈ L1(K)

}
=



f

∣∣∣∣∣∣
∀K ⊂⊂ Rd :

∫

K

|f(x)| dx <∞





This function space can be equipped with the seminorms ‖f‖K =
∫
K

|f(x)| dx.
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A.5.2.1 Mixed Norm Spaces

A weight function is a non-negative, locally integrable function on R2d.

Definition A.5.7 1. A weight function v on R2d is called submulti-
plicative, if

v(z1 + z2) ≤ v(z1) · v(z2) for all z1, z2 ∈ R2d

2. A weight function m on R2d is called v-moderate, if there exists a
C > 0 such that

m(z1 + z2) ≤ C · v(z1) ·m(z2)

Definition A.5.8 Let m be a weight function on R2d and let 1 ≤ q, p <∞.
Then the weighted mixed-norm space Lp,qm (R2d) consists of all (Lebesque)
measurable functions on R2d, such that

‖F‖Lp,q
m (R2d) =



∫

Rd



∫

Rd

|F (x, ω)|pm(x, ω)pdx




q
p

dω




1
q

<∞

This definition can be extended in a natural way to p, q = ∞ by using
the ess sup. This function class is a Banach space, translation invariant
and a Hölder inequality is valid, if the weights are v-moderate, with v a
submultiplicative weight, cf. [63].

Compare this to Definition A.3.12.

A.6 Distributions

We will not use this concept extensively, so only the basic ideas are given.
For details on this topic we refer for example to [71].

A.6.1 Schwartz Class

Definition A.6.1 The Schwartz class S consists of all C∞-functions on Rd

for which
sup
x∈Rd

∣∣DαXβf(x)
∣∣ <∞.

This is a Fréchet space with the semi-norms ‖ϕ‖α,β = sup
x∈Rd

{∣∣DαXβf(x)
∣∣}.

The Fourier transformation is a continuous bijection F : S → S.

249



A.6.2 Tempered Distributions

Distributions are a generalization of differentiable functions. This concept
was used by physicists long before the mathematical theory was developed.
The ”most famous” distribution is probably the Dirac function : Let δ(x) = 0
for x 6= 0 and

∫
R

δ(x) = 1. The problem with this definition is that there

is no Lebesque integrable functions that fulfills this definition. But the
”inner product” of this ”function” with a function ∈ S is well defined by
〈δ, f〉 =

∫
δ(x)f(x)dx = f(0). It also clear that for functions g in Lp(Rd)

this inner product 〈g, f〉 is well-defined. So the next definition can be seen
as generalization of functions:

Definition A.6.2 The elements of the dual space S ′ are called tempered
distributions.

Motivated by the Riezs representation theorem we will use the notation
〈ϕ, f〉 = ϕ(f) respectively 〈f, ϕ〉 = ϕ(f) for ϕ ∈ S ′ and f ∈ S. Clearly
this is no inner product, S is not even a Hilbert space. But this notation
is very helpful for seeing how distributions can be seen as generalization of
functions respectively properties of them. The duality of the inner product
in L2

(
Rd
)

and this notation is useful for many properties, for example:

Proposition A.6.1 Let ϕk ∈ S ′, if there exists an u such that for all f ∈ S

lim
k→∞

〈f, ϕk〉 = 〈f, u〉

then u ∈ S ′.

In this case we say u = lim
k→∞

ϕk in S ′.

Often a result for functions can be used as the basic idea for a definition
for distributions, for example:

1. For f, g ∈ L2 (R), both differentiable, we know that

∫
f ′g = f · g|∞−∞ −

∫
fg′

as f(x), g(x) → 0 for x→ ±∞, we get

〈f ′, g〉 = −〈f, g′〉

and this can be used for the definition of the derivation of a distribution.
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2. For the Fourier transformation the Paresval’s formula is used as defin-
ition of the Fourier transformation for distributions:

〈
f̂ , ϕ̂

〉
:= 〈f, ϕ〉

All functions in Lp(Rd) can be seen a distribution via 〈f, ϕ〉 =
∫

Rd

f(x)ϕ(x)dx

for f ∈ S ′, ϕ ∈ Lp(Rd). All bounded Radon measures µ are also included
in S ′ with 〈f, µ〉 =

∫

Rd

f(x)dµ(x). Plus we get a well-defined form for the

Dirac-distribution :

Definition A.6.3 Let δx0 ∈ S ′ be the tempered distribution for which

〈f, δx0〉 = f(x0)

for all f ∈ S. This is called the Dirac-distribution.
The periodized version of it

XM =
∑

k∈Zd

δk·M

is called the Shah-Distribution,

The famous Schwarz kernel theorem states that every operator from S to
S ′ corresponds to a kernel using the above inner product notation:

Theorem A.6.2 Let A : S → S ′ be an operator, then there exists a k ∈ S ′

such that
〈Af, g〉 = 〈k, g ⊗ f〉

This theorem can for example be found in [71]. A similar one can be formu-
lated for modulation spaces, see [63].

As a last remark let us refer to [43], where S0 is used as test functions
for another class of distributions S ′

0. Apart from the connection to time-
frequency analysis a big advantage of this approach is that S0 is a Banach
space.
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Appendix B

MATLAB codes

B.1 Frame Multiplier

B.1.1 Basic Algorithm
% Best Approximation of a matrix by a frame multiplier

% function [TA uppsym] = ApprFramMult(T,D,Ds)

%

% A matrix is best approximated (in the Hilbert-Schmidt sense) by a

% frame multiplier. The elements of the frames are given in the synthesis

% matrices D and Ds columnswise.

%

% inputs : T .......... the matrix (m x n)

% D .......... the elements of the analysis frame (columnwise)

% (n x K)

% Ds ......... the elements of the synthesis frame (columnwise)

% (m x K)

%

% output: TA ......... the best apporximation of the matrix T with frame

% multipliers using the frames in D and Ds

%

% usage: TA=ApprFramMult(T,D)

%

% test: T = eye(2,2)

% D = [0 1/sqrt(2) -1/sqrt(2); 1 -1/sqrt(2) -1/sqrt(2)]

% [TA coeff] = ApprFramMult(T,D);

% See testapprfarmmult.m and testapprGabmultKap1.m

%

% date: 10/03/2005 - 03/04/2005

%

% notes : D and Ds are just the synthesis operators of the respective frames.

% To be able to define frame multipliers they have to have the same

% number of elements.

%

% Author: XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

%

% Literature : [Xxl] P. Balazs; Irregular And Regular Gabor frame multipliers

% with application to psychoacoustical masking

% (Ph.D. thesis, in preparation 2005)

%

% See also: GMappir,low2uppIr
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%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.univie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

function [TA,uppsym]=ApprFramMult(T,D,Ds)

if nargin < 2

error(’At leatst two inputs are needed; T and D’);

end;

[N M] = size(T);

[Nd Kd] = size(D);

if N ~= Nd

error(’The number of rows in D and T have to be the same.’);

% as T:C^m -> C^n and D=( g_1 g_2 ...) with g_i \in C^n

end;

if nargin < 3

Ds = D;

else

[Ns Ks] = size(Ds);

if N ~= Ns

error(’The number of rows in Ds and T have to be the same.’);

end;

if Kd ~= Ks

error(’The frames must have the same number of elements.’);

end;

end;

lowsym = zeros(Kd,1); %lower symbol

for i=1:Kd

% d = D(:,i);

% ds = Ds(:,i);

% lowsym(i) = conj(d’*(T*ds));

lowsym(i) = conj(D(:,i)’*(T*Ds(:,i)));

end;

% the more elegant

% lowsym = diag(D’*T*D)

% is slower, O(k(n^2+n^2)))

% see [Xxl]

% Gram-matrix in Hilbert-Schmidt sense

if nargin < 3

Gram = abs((D’*D)).^2;

else

Gram = (D’*D).*((Ds’*Ds).’);

end;

% upper symbol:

uppsym = pinv(Gram)*lowsym;

% synthesis

TA = zeros(N,M);

for i = 1:Kd

% d = D(:,i);

% ds = Ds(:,i);
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% P = d*ds’;

P = D(:,i)*Ds(:,i)’;

TA = TA + uppsym(i)*P;

end;

% found no faster or more elgant way

B.1.2 Test File
A = [ 3 0 ; 0 5];

D = [ 1/2 sqrt(3)/2 ; sqrt(3)/2 -1/2];

[AD cD] = ApprFramMult(A,D)

T = eye(2,2)

% D = [cosd(30) cosd(150) cosd(270); sind(30) cosd(150) sind(270)]

D = [cosd(30) 1 0; sind(30) 1 -1]

[TA coeff] = ApprFramMult(T,D)

% % this frame is NOT tight, still the identity could be approximated

S = D*D’;

eig(S)

tS = mpower(S,-0.5)

tD = tS*D

[TAt coefft] = ApprFramMult(T,tD)

B.1.3 Test File For Application To Gabor Systems
% Test for ApprFramMult.m in the Gabor case

% see ApprFramMult.m for more information

load colormapsw_xxl; %optimized colormapr for printing

n = 32;

g = gaussnk(n);

%gamma = hanning(n/2).’;

gamma = hamming(n/2).’;

gamma= [gamma(1:n/4) zeros(1,n/2) gamma((n/4+1):(n/2))];

% Gauss function. Algorithm can be found in NuHAG Gabmin Toolbox

G = gabbasp(g,2,2);

Ga = gabbasp(gamma,2,2);

% Gabor Synthesis Operator (from the right!).

% Algorithm can be found in NuHAG Gabmin Toolbox

Id = eye(n);

[IA1 coeff1] = ApprFramMult(Id,G.’,Ga.’);

figure(1);surf(abs(IA1));colormap(cmap);

S = G’*G;

e = eig(S);

disp(sprintf(... % continued on the next line for printout

’(g,2,2) : Lower Frame Bound : A = %g Upper Frame Bound: B = %g’,...

min(e),max(e)));

Sa = Ga’*Ga;

e = eig(Sa);

disp(sprintf(... % continued on the next line for printout

’(gamma,2,2) : Lower Frame Bound for g : A = %g Upper Frame Bound: B = %g’,...

min(e),max(e)));

G = gabbasp(g,4,4);
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Ga = gabbasp(gamma,4,4);

[IA2 coeff2] = ApprFramMult(Id,G.’,Ga.’);

figure(2);surf(abs(IA2));colormap(cmap);

S = G’*G;

e = eig(S);

disp(sprintf(...

’(g,4,4) : Lower Frame Bound : A = %g Upper Frame Bound: B = %g’,...

min(e),max(e)));

G = gabbasp(g,4,8);

Ga = gabbasp(gamma,4,8);

[IA3 coeff3] = ApprFramMult(Id,G.’,Ga.’);

figure(3);surf(abs(IA3));colormap(cmap);

S = G’*G;

e = eig(S);

disp(sprintf(...

’(g,4,8) : Lower Frame Bound : A = %g Upper Frame Bound: B = %g’,...

min(e),max(e)));

G = gabbasp(g,8,8);

Ga = gabbasp(gamma,8,8);

Id = eye(n);

[IA4 coeff4] = ApprFramMult(Id,G.’,Ga.’);

figure(4);surf(abs(IA4));colormap(cmap);

S = G’*G;

e = eig(S);

disp(sprintf(...

’(g,8,8) : Lower Frame Bound : A = %g Upper Frame Bound: B = %g’,...

min(e),max(e)));

G = gabbasp(g,16,16);

Ga = gabbasp(gamma,16,16);

[IA5 coeff5] = ApprFramMult(Id,G.’,Ga.’);

figure(5);surf(abs(IA5));colormap(cmap);

S = G’*G;

e = eig(S);

disp(sprintf(...

’(g,16,16) : Lower Frame Bound : A = %g Upper Frame Bound: B = %g’...

,min(e),max(e)));

B.2 Irregular Gabor Frames And Multipliers

B.2.1 Irregular Gabor System

The following routine creates the full Gabor system over a given lattice. It
returns the synthesis matrix. To be compatible with the routine gabbbasp

from the Nuhag Toolbox, see [54], it is seen as a matrix for multiplication
from the right, acting on row-vectors.

function GBI = gabbaspirr(win,xpo);

% Creates the irregular Gabor frame n the lattice xpo

% gabbaspirr.M, 20.04.2005 XXL

%

% This program creates the irregular Gabor system using the window win at

% the points which are non-zero in xpo. This algorithm uses row vectors

% and matrix multiplication from the right to be compatible to gabbasp.m.

%

% Inputs : win ... window, length n; row vector

% xpo ... frequency time matrix, with K non-zero entries,
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% rows: frequency

%

% Output : GBI ... n x n matrix, the synthesis matrix of the system

%

% usage : GBI = gabbaspirr(win,xpo);

%

% see also: gabbasp.m

%

% Author: XXL .. a8927259@unet.univie.ac.at

% or xxl@kfs.oeaw.ac.at

%

% Notes: xpo was chosen to have the frequency values in the rows fitting

% the standard picture of a spectogram. So xpo(i,j) is the i-th frequency

% bin and j-the time frame. To fit to NuHAG-conventions, rotmod is used!!

% To get a matrix for left-multiplication use GBI.’

% We use first translation, then modulation: g_k = M_x_k T_y_k g%

%

% Lit.: [XXL] Peter Balazs, "Irregular and regular Gabor multiplier with

% application to psychoacoustic masking"

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

if nargin < 2; error(’two inputs needed.’); end;

n = length(win);

[nn n] = size(win);

if nn ~= 1

if n ~= 1

error(’the window has to be a vector!’);

end

win = win.’;

n = nn;

end;

if size(xpo) ~= [n,n];

error(’The Lattice does not fit the size of the window.’);

end;

[xpx xpy] = find(xpo > 0);

k = size(xpx,1);

if k == 0

error(’The matrix xpo is containing only zeros’);

end

GBI = zeros(k,n);

for ii = 1:k

% xpx(ii)

% xpy(ii)

gg = rotmod(win,xpy(ii)-1,xpx(ii)-1);

% plot(gg)

GBI(ii,:)=gg;

% pause

end

% F=ifft(eye(n))*n;

% tso = -1;

% for ii = 1:k
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% tsn = xpy(ii) % time-shift-new

% if tsn ~= tso

% g = rot(win,tsn-1)

% tso = tsn

% end;

% for jj = 1:k

% GBI(jj,:)=F(xpx(jj),:).*g;

% end

% end

B.2.1.1 Testfile

% test gabbaspIrr

reg = 1; % test with regular lattice ?

show = 0; % show movie?

n = 144;

g = randc(1,n);

gamma = g;

f = randc(1,n);

% g = gaussnk(n);

% g = rand(1,n);

if reg == 1

a = 9;

b = 8;

xpo=zeros(n);

xpo(1:b:n,1:a:n) = 1;

else

xpo = rand(n) > 1-2/n; % red = 2

end;

GBI=gabbaspirr(g,xpo);

%GBIa = gabbaspirr(g,xpo);

GBIa = GBI;

[K N] = size(GBI);

if show == 1

clear M;

for ii=1:K

hold on;

imagesc(abs(stft(GBI(ii,:),g)));spy(xpo,’w’);

hold off;

% pause

M(ii) = getframe;

end

movie(M)

end;

Si = GBIa’*GBI; % Analyse: gamma

disp(sprintf(’Rank of Si: %g’,rank(Si)));

if reg == 1

for ii=1:K

k2 = floor((ii-1)*b/n);

k1 = mod(ii-1,n/b);

% => ii = k2*n/b+k1+1

g1 = GBI(ii,:);

g2 = rotmod(g,k2*a,k1*b);

% g2 = rotmod(g,k2*a,k1*b);

if norm(g1-g2)> 0.1

disp(sprintf(’Problem: time: %g, freq.: %g’,k2,k1));

plot(real(g1)); hold; plot(real(g2),’r’)

return

else

% disp(sprintf(’Okay: time: %g, freq.: %g’,k2,k1));
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end;

%imgc(stft(G(ii,:),g));

%M(ii) = getframe;

end

disp(’Everything okay!’);

end;

[xpx xpy] = find(xpo > 0);

Vfull = stft(f,g,1,1);

% row index of STFT (Gabmin or NuHAGTB05a) are frequencies !!!!

V = zeros(1,K);

for ii = 1:K

V(ii) = Vfull(xpx(ii),xpy(ii));

end;

W = f*GBI’;

compnorm(V,W)

B.2.2 Kohn-Nirenberg Symbol
function KN=kohnniren(M);

% Calculate the Kohn-Nirenberg symbol of M

% kohniren.M, 20.04.2005 XXL

%

% This program calculates the Kohn-Nirenberg Symbol of the matrix M. In the

% finite-dimensional case the matrix corresponds to the integration kernel

% and therefore:

% KN (M) = F_2 T_a M = fft(col2diag(M)); (see [XXL])

%

% Inputs : M ... square n x n matrix

%

% Output : CD ... n x n matrix: the Kohn-Nirenberg symbol

%

% usage : DM = kohnniren(M);

%

% see also: ker2kohn.m (same functionality, no comments)

%

% Author: XXL .. a8927259@unet.univie.ac.at

% or xxl@kfs.oeaw.ac.at

%

% Notes: this is exactly the operation used for the Kohn-Nirenberg symbol!

%

% Lit.: [XXL] Peter Balazs, "Irregular and regular Gabor multiplier with

% application to psychoacoustic masking"

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

if nargin < 1; error(’no input’); end;

[h,n] = size(M);
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if h ~= n ;

disp(’M has to be square matrix’)

return;

end;

KN = fft(col2diagxxl(M).’);

B.2.2.1 Testfile:

% test Kohn-Nirenberg symbol implementation with Rihaczek distribution

n = 144;

F = fft(eye(n));

g = gaussnk(n);

Rih = (g.’*conj(fft(g))).*F; % Rihaczek distribution

KN = kohnniren(g’*g);

compnorm(Rih,KN);

B.3 Approximation Of Matrices By Irregular

Gabor Multiplier

B.3.1 The Gram Matrix Of The TF Projections
% determination of Gramian Matrix of Gabor rank one operators

% HSGramMatrXXL.M XXL, 13.05.2004

%

% function hsgm = HsGramMatrXXL(xpo,g,gamma,show,full)

%

% determines either the full Hilbert Schmidt Gram Matrix of the

% rank one operators f -> <f, \pi(\lambda) \gamma> \pi(\lambda’)

% g (full = 1) or only the entries important for a Gabor

% multiplier (full = 0)

%

% inputs : xpo .... (0/1) square matrix of points in the TF plane

% row index - frequency, column index -time

% (following the convention for normal spectograms)

% g .... synthesis window row vector (1 x m),

% Default: Gauss

% gamma .... analysis window row vector (1 x m’),

% Default: g

% show .... show graphics (slower) (*/0), Default: 1

% (if input ~= 0, show = 1!)

% full .... calculate the HS Gram Matrix of all

% possible TF projections

% or only

% the entries which are used in Gabor

% multipliers, where the tensor product only

% depends on one TF point (1/*),

% Default: 0 (if input ~= 1, full = 0!)

%

% output: the k^2 x k^2 HS gram matrix, where k is the number of

% non zero entries in xpo. (full = 1)

% the k x k part of HS gram matrix, important for Gabor

% multiplier (otherwise)

%

% usage: HsGramMatrXXL(xpo,g,gamma,show,full)

%
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% notes: The entries of this HS Gram Matrix are (full == 1)

% < g_k \otimes gamma*_j , g_i \otimes gamma*_l >_HS =

% = < g_k \otimes gamma*_j , g_i \otimes gamma*_l >_L2 =

% = < g_k , g_i > < gamma_j, gamma_l >* =

% = STFT_gamma(gamma)_(k,i) * STFT*_g(g)_(j,l)

%

% (full == 0) => k = j, i = l

%

% See also: GMAPPirr, teststft

%

% Ref.: [xxl]... P. Balazs, "Regular And Irregular Gabor Multipliers With

% Application To Psychoacoustic Masking"

%

% complexity: O(n^4) (full == 1) or O(n^2)

% (so can be time consuming)

%

% XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

%

% notes:

% The matrices A,B are (up to a phase factor) the "Cross"-Gram

% Matrices of the TF atoms g_j, g_l resp. gamma_k, gamma_i.

%

% For full == 1, the complexity is about O(n^4), most of the time

% is used by the function "kron" if n is big enough. This function

% is a built in function, so should be fairly optimized.

% Otherwise most of the time is used up by the assignement of the

% matrcies.

% For full == 0, the complexity is O(n^2).

% For n=144, k = 0,5 % of N (full == 0) this functions needs about

% 12 sec. (PIII 937)

% For n=144, k = 1,5 % of N (full == 0) this functions needs about

% 101 sec.

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.univie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

function hsgm = HsGramMatrXXL(xpo,g,gamma,show,full)

% to test how much time is used by which part, use profiling:

% profile on -detail builtin;

if nargin < 1

error(’Function HSGramMatrXXL has to get at least one parameter : xpo’);

end

[N M] = size(xpo);

if M ~= N

error(’XPO has to be a square matrix’);

end;

[xpx xpy] = find(xpo > 0);

% xpx ... frequencies

% xpy ... time

k = size(xpx,1);

if k == 0

error(’The matrix xpo is containing only zeros’);

end

if nargin < 2

g = gaussnk(N);
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disp(’using default gaussian analysis window’);

else

% Maybe create a subfunction check(g);

[n m] = size(g);

if m < n

g = g.’;

disp(’transposing g’);

[n m] = size(g);

end

if n ~= 1

error(’Input g should be a vector’)

end

if m > N

error(’The size of g is bigger than the (spectral) size of xpo’)

elseif m < N

gaga = zeros(1,N - size(g)) % zeropadding

gamma = [gamma;gaga]

end

end

if nargin < 3

gamma = g;

disp(’using default synthesis window: gamma = g’);

else

[n m] = size(gamma);

if m < n

gamma = gamma.’;

disp(’transposing gamma’);

[n m] = size(gamma);

end

if n ~= 1

error(’Input gamma should be a vector’)

end

if m > N

error(’The size of g is bigger than the (spectral) size of xpo’)

elseif m < N

gg = zeros(1,N - m) % zeropadding

g = [g;gg]

end

end

if nargin < 4

show = 0;

elseif show ~= 0

show = 0;

end

if nargin < 5

full = 0;

elseif full ~= 1

full = 0;

end

gst = stft(g,g,1,1); % full stft

gast = stft(gamma,gamma,1,1); % full stft

if show == 1

figure(1);

subplot(2,1,1);

imgc(gst);

title(’Wigner-like distribution of analysis atom’);

subplot(2,1,2);
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imgc(gast);

title(’Wigner-like distribution of synthesis atom’);

end

A = zeros(k);

B = zeros(k);

% try to programm this part using MATLAB matrix functions

for ii = 1:k

for jj = 1:k

A(ii,jj) = gst(mod(xpx(jj)-xpx(ii),N)+1,mod(xpy(jj)-xpy(ii),N)+1);

% row index of STFT are time values, see teststft.m

% using periodic extension

B(ii,jj) = conj(gast(mod(xpx(jj)-xpx(ii),N)+1,mod(xpy(jj)-xpy(ii),...

N)+1));

% conjugate for a ’real’ tensor product !!!!!

end

end

if full == 1

hsgm = kron(A,B);

else

hsgm = A.*B;

end

if show == 1

figure(2);

SURF(abs(hsgm));

end

% Profiling end part:

% profile report;

% figure(3);

% profile plot;

% profile off;

B.3.1.1 Testfile:

% test HSGRamMatrXXL

%

% Ref.: P. Balazs, "Regular And Irregular Gabor Multipliers With

% Application To Psychoacoustic Masking"

%

% See testproj, HSGramMatrXXL

n = 144;

g = randc(1,n); % Synthesis Atom

gamma = randc(1,n); % Analysis Atom

% g = gaussnk(n);

% gamma = hamming(n/2).’;

% gamma= [gamma(1:n/4) zeros(1,n/2) gamma((n/4+1):(n/2))];

% for regular case :

% xpo = zeros(n,n);

% a = 9;

% b = 9;

% xpo(1:b:n,1:a:n) = 1;

xpo = rand(n) > 1-2/n; % red = 2

G = gabbaspirr(g,xpo);
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Ga = gabbaspirr(gamma,xpo);

Gram1 = HSGramMatrXXL(xpo,g,gamma);

[xpx xpy] = find(xpo > 0);

K = length(xpx);

Gram2 = zeros(K);

Vfull = stft(g,g,1,1);

Wfull = stft(gamma,gamma,1,1);

for ii = 1:K;

for jj = 1:K;

Gram2(ii,jj) = ...

Vfull(mod(xpx(jj)-xpx(ii),n)+1,mod(xpy(jj)-xpy(ii),n)+1).*...

conj(Wfull(mod(xpx(jj)-xpx(ii),n)+1,mod(xpy(jj)-xpy(ii),n)+1));

end;

end;

%PHS = zeros(K,n*n);

%Pnull = gamma’*g;

%for ii = 1:K;

% Ptemp = tfconj(Pnull,xpy(ii)-1,xpx(ii)-1);

% PHS(ii,:) = Ptemp(:);

%end;

%Gram3 = PHS*PHS’;

% Gram3 = abs(PHS*PHS’); % why abs ????

%

% ATTENTION: Tfconj (Gabmin) imeplements modrot, not rotmod !!!!!!!!!!!!

%

Gram4 = (G*G’).*conj(Ga*Ga’); % conj. !!

PHS2 = zeros(K,n*n);

for ii = 1:K;

gal = rotmod(gamma,xpy(ii)-1,xpx(ii)-1);

gl = rotmod(g,xpy(ii)-1,xpx(ii)-1);

% gal = modrot(gamma,xpx(ii)-1,xpy(ii)-1); %for comparison with tfconj

% gl = modrot(g,xpx(ii)-1,xpy(ii)-1);

Ptemp = gal’* gl;

PHS2(ii,:) = Ptemp(:);

end;

% disp(’*** PHS - PHS2:’);compnorm(PHS,PHS2);

Gram5 = PHS2*PHS2’;

disp(’ ’);

disp(’*** Gram1-Gram2’);compnorm(Gram1,Gram2);

%disp(’*** Gram1-Gram3’);compnorm(Gram1,Gram3);

disp(’*** Gram1-Gram4’);compnorm(Gram1,Gram4);

disp(’*** Gram1-Gram5’);compnorm(Gram1,Gram5);

%disp(’*** Gram2-Gram3’);compnorm(Gram2,Gram3);

disp(’*** Gram2-Gram4’);compnorm(Gram2,Gram4);

disp(’*** Gram2-Gram5’);compnorm(Gram2,Gram5);

%disp(’*** Gram3-Gram4’);compnorm(Gram3,Gram4);

%disp(’*** Gram3-Gram5’);compnorm(Gram3,Gram5);

disp(’*** Gram4-Gram5’);compnorm(Gram4,Gram5);

% rank(G’*G)

%rank(Ga’*Ga)

% Tests:

% n = 144;

% *** Gram1-Gram2

% Norm of first input x: 9387.5 , norm of second input y: 9387.5 , quotient = 1 .

% norm of the difference of the normalized versions = 0 .

% *** Gram1-Gram4
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% Norm of first input x: 9387.5 , norm of second input y: 9387.5 , quotient = 1 .

% norm of the difference of the normalized versions = 4.2874e-015 .

% *** Gram1-Gram5

% Norm of first input x: 9387.5 , norm of second input y: 9387.5 , quotient = 1 .

% norm of the difference of the normalized versions = 5.11798e-015 .

% *** Gram2-Gram4

% Norm of first input x: 9387.5 , norm of second input y: 9387.5 , quotient = 1 .

% norm of the difference of the normalized versions = 4.2874e-015 .

% *** Gram2-Gram5

% Norm of first input x: 9387.5 , norm of second input y: 9387.5 , quotient = 1 .

% norm of the difference of the normalized versions = 5.11798e-015 .

% *** Gram4-Gram5

% Norm of first input x: 9387.5 , norm of second input y: 9387.5 , quotient = 1 .

% norm of the difference of the normalized versions = 2.85202e-015 .

B.3.2 Approximation Algorithm
% Approximation of Matrices by irregular Gabor multiplier

% function [TAI,COEFF]=gmappirr(T,xpo,g,gamma,show)

%

% The best approximation of a matrix by a Gabor multiplier with

% analysis window g and synthesis window gamma on the (irregular) grid xpo

% is calculated.

%

% inputs : T ......... the matrix

% g ......... Gabor synthesis window, row vector

% gamma ..... Gabor analysis window, row vector

% xpo ....... the (possibly) irregular grid, row index = frequency

% show ...... flag if error should be calculated

%

% output: TAI ....... the best approximation by Gabor multipliers

% coeff ..... the lower symbol

%

% usage: [TAI,COEFF] = Blo2WalXXL(A,n)

%

% test: use TestGabMulAppIrr.m

%

% last change: 01/05/2005

%

% notes: Some files out of the NuHAG Toolbox are used, so the convetion

% there for using row vectors and matrix multiplication from the

% right is used !!

%

% see also: ApprFramMult.m, HSGramMatrxxl.m, testhsgrammatr.m

%

% Author: XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

%

% Literature : [Xxl] P. Balazs; Gabor frame multipliers with application to

% psychoacoustical masking

% (Ph.D. thesis, in preparation)

% [FHK] H. G. Feichtinger, M. Hampjes, G. Kracher;

% Approximation of Matrices by Gabor Multipliers,

% IEEE Signal Procesing Letters Vol. 11, No. 11 (2004)

% [Doe] M. Doerfler; Gabor Analysis for a Class of Signals

% called Music, PhD thesis Univ. Wien (2002)

%

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.univie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of
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% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

function [TAI,uppsym]=gmappirr(T,xpo,g,gamma,show)

if nargin < 2

error(’Function GMAPPIr has to get at least two parameters : T,xpo’);

end

[N M] = size(xpo);

xxx = find(xpo.’ > 0);

k = size(xxx,1);

if k == 0

error(’The matrix xpo is containing only zeros’);

end

[TN TM] = size(T);

if TN ~= TM

error(’At the moment only square matrices can be used.’);

elseif TN ~= N

error(’Matrix size does not fit grid size.’);

end;

if nargin < 3

g = gaussnk(N);

disp(’using default gaussian analysis window’);

else

% Maybe create a subfunction check(g);

[n m] = size(g);

if m < n

g = g.’;

disp(’transposing g’);

[n m] = size(g);

end

if n ~= 1

error(’Input g should be a vector’)

end

if m < N | m < M

error(’The length of g is too small for xpo.’);

end

end

if nargin < 4

gamma = g;

disp(’using default synthesis window: gamma = g’);

else

[n m] = size(gamma);

if m < n

gamma = gamma.’;

disp(’transposing gamma’);

[n m] = size(gamma);

end

if n ~= 1

error(’Input gamma should be a vector’)

end

if m < N | m < M

error(’The length of g is too small for xpo.’);

end

end
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GBI = gabbaspIrr(g,xpo);

GBIa = gabbaspIrr(gamma,xpo);

lowsym = zeros(k,1); %lower symbol

for ii=1:k

lowsym(ii) = (GBI(ii,:)*T)*(GBIa(ii,:)’);

end;

% Gram-matrix in Hilbert-Schmidt sense

Gram = HSGramMatrXXL(xpo,g,gamma);

% upper symbol:

uppsym = pinv(Gram)*lowsym;

% synthesis

TAI = zeros(N,M);

for ii = 1:k

P = GBIa(ii,:)’*GBI(ii,:);

TAI = TAI + uppsym(ii)*P;

end;

if nargin < 5 | show ~= 1

show=0;

end

if show==1

disp(’Fehler:’);

norm(T-TA,’fro’)

end;

B.3.2.1 Testfile:

% Test the Approximation of Matrices by Gabor Mulitpliers

% Script-File

% see GMAPPirr.m for more information

reg = 0;

single = 0;

n = 32;

g = gaussnk(n);

if single == 1

gamma = g;

else

gamma = hamming(n/2).’;

gamma= [gamma((n/4+1):(n/2)) zeros(1,n/2) gamma(1:n/4)];

gamma = gamma/norm(gamma);

figure(5); subplot(1,2,1); plotc(g); title(’Analysis Atom:’);

subplot(1,2,2); plotc(gamma); title(’Synthesis Atom:’);

end;

%gamma= [gamma(1:n/4) zeros(1,n/2) gamma((n/4+1):(n/2))];

%imagesc(abs(stft(g,g)));

%pause;

%imagesc(abs(stft(gamma,g)));

if reg == 1

a = 4;

b = 4;

xpo = zeros(n,n);

xpo(1:b:n,1:a:n) = 1;

T = randc(n,n);

% T = rot(eye(n),6);
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else

T = eye(n);

xpo = rand(n) > (1-2/n); % red = 2

end;

[TAI,COEFFI] = GMAPPir(T,xpo,g);

G = gabbaspirr(g,xpo);

% Ga = gabbaspirr(gamma,xpo);

S = G’*G;

rank(S)

e = eig(S);

if reg == 1

disp(sprintf(... % continued on the next line for printout

’(g,%g,%g) : Lower Frame Bound for g : A = %g Upper Frame Bound: B = %g’,...

a,b,min(e),max(e)));

else

disp(sprintf(... % continued on the next line for printout

’(g,xpo) : Lower Frame Bound for g : A = %g Upper Frame Bound: B = %g’,...

min(e),max(e)));

end

[IA1 coeff1] = ApprFramMult(T,G.’);

compnorm(TAI,IA1);

figure(6); subplot(1,2,2); surf(TAI); hold; spy(xpo); title(’approximation’);

subplot(1,2,1); surf(T); hold; spy(xpo); title(’original’);

figure(1);

subplot(1,2,1);surf(T);title(’original’);

subplot(1,2,2);surf(TAI); title(’approximation’);

figure(2);

subplot(1,2,1); spy(xpo); hold; contour(T); title(’original’);

subplot(1,2,2); spy(xpo); hold; contour(TAI); title(’approximation’);

if reg == 1 & single == 1

TA = gmappmh(T,g,a,b); % regular version

figure(4)

subplot(3,1,1);surf(T);title(’original’);

subplot(3,1,2);surf(TA); title(’approximation (regular by MH)’);

subplot(3,1,3);surf(TAI); title(’approximation (irregular)’);

compnorm(TA,TAI);

end

B.4 Discrete Gabor Transformation

For the applications in this thesis and the numerical tests a lot of programs
were needed. Some of these programs are based of the work and algorithms
of H.G. Feichtinger, S. Qiu and M. Hampejs, see e.g. [104] and [50]. A few
of these files are only minor reformulations of existing algorithms, but e.g.
adding comments. I have to thank NuHAG and especially H.G. Feichtinger
for providing these basics.

Some existing algorithms have been done completly anew, as either there
was some error in the code, which was hard to find and / or the documenta-
tion was not good enough, so that it so sometimes took less time to reprogram
it, than to try to understand the existing code respectivly find the error.
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Some of these algorithms have been developed simultaneously by G.
Kracher and M. Hampejs during the joint work on ’Double Precondition-
ing of the Gabor frame operator’ [9].

B.4.1 Basic routines

B.4.1.1 Matrix Fourier Transformation

% FMF.M Fourier Transformation of a matrix

% by XXL

%

% inputs : A .... m x n Matrix with the non trivial data

%

% output: the mxn matrix FSF with

% FSF = F_m * A * F’_n

%

% this uses the unitary FFT!

%

% notes: fast version (01/03/2005)

%

% XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

function U = FMF(A);

[n m] = size(A);

% (1) slow but instructive:

% F = fftu(eye(n));

% F1 = fftu(eye(m));

% UT = F*A*F1’;

%

% (2) fast

UT = ifft(fft(A).’).’;

UT = UT*(sqrt(m)/sqrt(n));

% to get unitary result!

indx = find(abs(UT)>10*eps);

U=zeros(m,n);

U(indx)=UT(indx);

B.4.1.2 Inverse Matrix Fourier Transformation

% iFMF.M inverse Fourier Transformation of a matrix

% by XXL

%

% inputs : A .... m x n Matrix with the non trivial data

%

% output: the mxn matrix FSF with

% FSF = F_m * A * F’_n

%

% notes: fast version (01/03/2005)

%

% XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

function U = iFMF(A);
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[n m] = size(A);

% (1) slow but instructive:

% F = fftu(eye(n));

% F1 = fftu(eye(m));

% UT = F’*A*F1;

%

% (2) fast

UT = fft(ifft(A).’).’;

UT = UT*(sqrt(n)/sqrt(m));

% to get unitary result!

indx = find(abs(UT)>10*eps);

U=zeros(m,n);

U(indx)=UT(indx);

B.4.1.3 Initialisation of Gabor atoms et al.

This is used to run all basic algorithms from the Gabmin Toolbox see [54].

% GABminINIT Gabor initialization file

%

% initalize variables for gabor analysis

% -> original (g), dual (gd) and tight window (gt)

% -> corresponding analysis operator (G, GD, GT), also for adjoint lattice

% (GA)

% -> frame operator for original window and lattice (S)

% Show windows and their spectra

%

% derived from gabinit.m ny HGFei

% modified by XXL to work with the GABMIN tools

% but check for other files

% XXL: contact a8927259@unet.univie.ac.at

% last modification 09.12.2004

%clc;

disp(’ Attention. This script tries to use existing variables. ’);

disp(’ If you want to make sure, that you use the desired variables, ’);

disp(’ assign g,a,b and n. At the moment ’)

whos g;

if exist(’a’) == 1;

a

end;

if exist(’b’) == 1;

b

end;

if exist(’n’) == 1;

n

else

if exist(’a’) ~= 1 & exist(’b’) ~= 1

disp (’No variable is already set. So’);

end

n = 144

% disp(’n is set to 144’);

end;

if exist(’g’) == 1;

[N M] = size(g);
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if N > 1;

g=g.’;

[N M] = size(g);

end;

if N == 1 & M > 1;

n = M;

disp(sprintf(’g exists so n is set to %g’,M));

else

disp(’Gauss function as window g created.’);

g = gaussnk(n);

end;

else

disp(’Gauss function as window g created.’);

g = gaussnk(n);

end;

alph = alldiv(n); alph = alph(:)’;

mx1 = max(find(alph <= sqrt(n)));

divs = alph(1:mx1),

if exist(’a’) ~= 1 | a < 0 | a > n | mod(n,a) ~= 0;

a = alph(mx1)

%disp(sprintf(’a is set to %g’,a));

end;

if exist(’b’) ~= 1 | b < 0 | b > n | mod(n,b)~= 0; % eval(’b’,0) ~= 0 | a*b > n |

if mx1 == 1;

b = round(n/a)

if b == 0;

b = 1

end;

else

b = alph(mx1-1)

end;

%disp(sprintf(’b is set to %g’,b));

end;

if a*b > n

disp(’The redundancy is smaller than one, so this cant be a frame’);

end;

red = n/(a*b)

xpo = lattp(n,a,b);

xpa = lattp(n,n/b,n/a);

gtt = ’?’;

disp(’calculating dual atom’);

% pause(1);

if rem(red,1) == 0 & exist(’zd’) == 2;

gd = zd(g,a,b);

disp(’using Zak transform with integer oversampling’);

elseif red == 1;

gd = zakdfei(g,a,b);

disp(’using Zak transform in the critical case’);

else

gd = gabddd(g,a,b);

end;

disp(’dual atom done’);

% pause(0.2);

if rem(red,1) == 0 & exist(’zt’) == 2;

disp(’calculating tight atom, using Zak transform’);

gt = zt(g,a,b);

elseif exist(’gabtgf’) == 2;

disp(’dual atom done, doing tight atom now’);

gt = gabtgf(g,a,b);
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else

disp(’no tight atom is calculated, no tool in Gabmin’);

gtt = ’no’;

% gt is a built-in function, so use actual assignment and not clear

end;

% f3sp(g,gt,gd);

disp(’now establishing matrices’);

pause(1);

if red*n < 540

G = gabbasp(g,a,b);

GD = gabbasp(gd,a,b);

if gtt ~= ’no’;

GT = gabbasp(gt,a,b);

end;

S = G’*G;

GA = gabbasp(g,n/b,n/a);

else

sprintf(’red*n is too large (%d) to automatically establish matrices’,red*n);

end;

disp(’call "whos" for more details’);

% disp(’f3sp(g,gt,gd); shows Gabor atoms, tight + dual’);

if gtt ~= ’no’ & exist(’gt’) == 1 & exist(’f3sp’) == 2;

f3sp(g,gt,gd);

else

f2sp(g,gd);

end;

B.4.1.4 Diag2Row

function DM=diag2row(M,F);

% Make the diagonals of a matrix the rows of a new matrix

% diag2col.M, 29.10.04 XXL

%

% This program produces a compressed collection of the side diagonals

% as rows of a new matrix, the program transfers the

% sidediagonals to the rows of the new matrix, only using every

% F-th diagonal.

% This program uses the main diagonal as first row and

% the F-th sidediagonal under the main diagonal as second row

% and so on:

% DM_i,j = M_{i*F+j,j}

%

% Inputs : M ... square n x n matrix

% F ... a divisor of n

% (Default) F = 1;

%

% Output : DM ... n/F x n matrix,

%

% usage : DM = diag2row(M,F);

%

% see also: diag2col, SIDEDIGM, Blo2WalXXl, Wal2BloXXL

%

% Author: XXL .. a8927259@unet.univie.ac.at

% or xxl@kfs.oeaw.ac.at

% based on:

% SIDEDIGM.M, 18.11.93 by Sigang Qiu

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science
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% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

if nargin == 1; F = 1; end;

[h,n] = size(M);

if h ~= n ;

disp(’M has to be square matrix’)

return;

end;

if mod(n,F) ~= 0;

sprintf(’F (= %g) should be a divisor of n (%g)’,F,n)

return;

end;

DM = zeros(n/F,n);

for jj = 1 : n/F;

tt = mod((jj-1)*F:(jj-1)*F+n,h)+1;

temp = M(tt,:);

DM(jj,:)=diag(temp);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Old code:

% st = (jj-1)*F*n ;

% ndx = rem(st-1 + (1: (n+1) : n^2), n^2) + 1 ;

% sd = M(ndx);

% DM(jj,:) = sd;

%

% st = (jj-1)*F*n ;

% ndx = rem(st-1 + (1: (n+1) : n^2), n^2) + 1 ;

% sd = M(ndx);

% DM(jj,:) = sd;

% translation matrix(j):

% P = rot(eye(n),k);

B.4.1.5 Diag2Col

function DM=diag2col(M,F);

% Make the diagonals of a matrix the columns of a new matrix

% diag2col.M, 12.01.2005 XXL

%

% This program produces a compressed collection of the side diagonals

% as columns of a new matrix, the program transfers the

% sidediagonals to the columns of the new matrix, only using every

% F-th diagonal.

% This program uses the main diagonal as first column and

% the F-th sidediagonal right of the main diagonal as second column

% and so on:

% DM_i,j = M_{i,i+j*F}

%

% Inputs : M ... square n x n matrix

% F ... a divisor of n

% (Default) F = 1;

%

% Output : DM ... n/F x n matrix,

%

% usage : DM = diag2col(M,F);

272



%

% see also: diag2row, SIDEDIGM, Blo2WalXXl, Wal2BloXXL

%

% Author: XXL .. a8927259@unet.univie.ac.at

% or xxl@kfs.oeaw.ac.at

% based on:

% SIDEDIGM.M, 18.11.93 by Sigang Qiu

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

if nargin == 1; F = 1; end;

[h,n] = size(M);

if h ~= n ;

disp(’M has to be square matrix’)

return;

end;

if mod(n,F) ~= 0;

sprintf(’F (= %g) should be a divisor of n (%g)’,F,n)

return;

end;

DM = zeros(n,n/F);

for jj = 1 : n/F;

tt = mod((jj-1)*F:(jj-1)*F+n,h)+1;

temp = M(:,tt);

DM(:,jj)=diag(temp);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B.4.1.6 Col2Diag

function CD=col2diagxxl(M);

% Reorder matrix to switch the columns to the sidediagonals

% col2diagxxl.M, 20.04.2005 XXL

%

% This program reorders the matrix, switching the entries from the same

% column to the same side-diagonal. The first row stays fixed.

% CD_i,j = M_{i,i-j}

%

% Inputs : M ... square n x n matrix

%

% Output : CD ... n x n matrix

%

% usage : DM = col2diagxxl(M);

%

% see also: diag2row, SIDEDIGM, Blo2WalXXl, Wal2BloXXL

%

% Author: XXL .. a8927259@unet.univie.ac.at

% or xxl@kfs.oeaw.ac.at

%
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% Notes: this is exactly the operation used for the Kohn-Nirenberg symbol!

%

% Lit.: [XXL] Peter Balazs, "Irregular and regular Gabor multiplier with

% application to psychoacoustic masking"

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

if nargin < 1; error(’no input’); end;

[h,n] = size(M);

if h ~= n ;

disp(’M has to be square matrix’)

return;

end;

CD = zeros(n,n);

jj = 1 : n;

for ii = 1 : n;

CD(ii,jj)=M(ii,mod(jj-ii,n)+1);

end;

B.4.2 The block structure of the Gabor frame matrix

B.4.2.1 Block to full matrix

% Create a full (Gabor-type) matrix out of a block matrix

%

% Blo2WalXXL.M Block-to-Walnut-matrix

% by XXL

%

% This program creates a matrix that looks like a Gabor frame

% matrix, a so called Gabor-like or Walnut matrix, meaning only every

% M=L/b sidediagonal is not zero and the side diagonals are a-periodic.

% So the matrices created have b*b diagonal blocks and are

% a-block circulant.

%

% Attention: it is important how the gabor like matrix is built.

% With this program both possibilities are supported.

%

% inputs : A ........ block Matrix with the non trivial data

% n ......... (minimum) size of result

% method .... 0 - b x a block matrix

% 1 - a x b block matrix

%

% output: the n x n matrix having only the data of A as non trivial

% values. The rest is defined by being a "Gabor frame like"

% matrix, see above.

%

% usage: B = Blo2WalXXL(A,n)

%

% notes : method == 0 corresponds to the algorithm first used and
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% implemented by Qiu and Feichtinger, where the block matrix is

% the condensed left b x n submatrix of the frame operator

% method == 1 uses the a x b matrix, which is derived from the

% upper submatrix a x n submatrix

%

% Author: XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

%

% Literature : [Qiu] S. Qiu, H.G. Feichtinger, Gabor-Type Matrices And

% Discrete Huge Gabor Transforms

% [Xxl] P. Balazs, Gabor frame multipliers with application to

% psychoacoustical masking

% (Ph.D. thesis, in preparation)

%

% See also: blockxxl.m - which builds a block matrix for a gabor system

% bm2fm.m - version of Mario Hampjes

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

% news (12/01/2005) both kind of block matrices possible.

function U = Blo2Walxxl(A,n,method);

if nargin < 1

disp(’At least one input (A) is needed’);

return;

elseif nargin < 3 | method ~= 1

method = 0;

end;

[b a] = size(A);

if rem(n, lcm(a,b)) ~=0 ;

sprintf(...

’n has to be a multiple of the number of rows (a= %i) and columns (b= %i) of A’...

,a,b)

sprintf(’Setting it to the smallest common multiple bigger than n=%i’,n)

n = exp(floor(log(n)/log(mult))+1)

end;

U = zeros(n,n);

rr = 0:(b-1);

if method == 0

M = n/b;

for ii = 0:(n-1)

p = mod(ii + rr*M,n)+1;

U(p,ii+1) = A(mod(rr,b)+1,mod(ii,a)+1);

end

else

[a b] = size(A);

M = n/b;

for ii = 0:(n-1)

p = mod(ii + rr*M,n)+1;

U(ii+1,p) = A(mod(ii,a)+1,mod(rr,a)+1);
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end

end;

B.4.2.2 Full (walnut) matrix to block

% Create the block matrix our of the full Gabor-type matrix

% Wal2BloXXL.M Gabor Frame Like Matrix

% by XXL, 22.06.2004

%

% This program creates the data block from a matrix

% expecting it to be a Walnut matrix, Gabor-like , meaning

% it is expected to have a-periodic side-diagonals and only

% every M=L/b the sidediagonal is not zero. Depending on the parameter

% method a b x a or a x b matrix is created.

%

% inputs : A ...... n x n Matrix with the non trivial data

% a ...... first parameter (block-circulant,

% periodic side diagonals; in Gabor case time)

% b ...... second parameter (diagonal blocks,

% non-zero side diagonals; in Gabor case frequency)

% method . 0 - b x a block matrix (Default)

% 1 - a x b block matrix

%

% output: the block matrix with the "essential" data.

%

% usage: B = Wal2Blo(A,n)

%

% notes : method == 0 corresponds to the algorithm first used and

% implemented by Qiu and Feichtinger, where the block matrix is

% the condensed left b x n submatrix of the frame operator

% method == 1 uses the a x b matrix, which is derived from the

% upper submatrix a x n submatrix

%

% Author: XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

%

% Literature : [Qiu] S. Qiu, H.G. Feichtinger, Gabor-Type Matrices And

% Discrete Huge Gabor Transforms

% [Xxl] P. Balazs, Gabor frame multipliers with application to

% psychoacoustical masking

% (Ph.D. thesis, in preparation)

%

% see also: blockxxl.m, blo2walxxl.m, blocknon.m

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

% news (12/01/2005) both kind of block matrices possible.

function U = Wal2Bloxxl(A,a,b,method);

if nargin < 3;

disp(’At least three inputs (A,a,b) are needed’);

end;
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if nargin < 4 | method ~= 1

method = 0;

end

[n m] = size(A);

if n ~= m;

disp(’The matrix should be quadratic’);

return;

end;

T = n/a;

F = n/b;

mult = lcm(a,b);

if rem(n, mult) ~=0;

disp(sprintf(...

’The number of rows (a= %i) and columns (b= %i) of A have %s%i)’,...

’ to be divisors of the size of the Matrix (n=’,a,b,n));

return;

end;

if method == 0

U = diag2row(A,F)

U = U(:,1:a)

else

U = diag2col(A,F)

U = U(1:a,:)

end

B.4.2.3 Gabor Frame Matrix

% GABFRMATXXL.M Gabor Frame Matrix

% by XXL, 13.10.2004

%

% based on GABFRMATRIX.M Sigang Qiu 11.11.93, generated by DIASUNS

%

% This algorithms creates the Gabor frame matrix with the window g,

% the time shift a and the frequency shift b. It is a very fast and

% efficient way of calculating the Gabor frame matrix.

%

% inputs : g .... the Gabor window (a vector of length n)

% a .... time shift parameter (lattice parameter)

% b .... frequency shift parameter (lattice parameter)

%

% output: the n x n Gabor frame matrix .

%

% usage: S = Gabfrmatxxl(g,a,b)

%

% see also: Blo2WalXXL.m, GabFrMatrix.m

% Example:

% n = 144;

% a = 9;

% b = 12;

% g = gaussnk(n);

% S = gabfrmatxxl(g, a, b);

%

% Changes:

% this function now only calculates the non-zero-block-matrix, which then is
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% used by Blo2WalXXL to create S.

%

% (Gabfrmatrix.m): This is the same version as gabgab with the block and

% rotrotm replaced by the trick codes.

%

% XXL .. Peter Balazs, contact: a8927259@unet.univie.ac.at

function UU = gabfrmatXXL(g, a, b);

n = length(g);

% error checking not necessary is done in the next function

u = blockxxl(g,a,b);

UU = Blo2WalXXL(u,n);

% ----------------------------------

% profile on;

% profile report;

% figure(2);

% profile plot;

% profile off;

% OLD:

% T = n/a; F = n/b;

%if (rem(n, a) ~=0) |(rem(n, b) ~=0);

%disp(’Check the size of the matrix, please’); return; end

%gg = [g, g];

% uu = zeros(a,b);

% for jj=1:a,

% for rr = 1:b;

% per1 = jj:a:(n+jj-1);

% pp = jj + (rr - 1)*F;

% per2 = pp:a:(n+pp-1);

% uu(jj,rr) = gg(per1)*gg(per2)’;

% end

% end

B.4.2.4 blockxxl.m

function M = blockxxl(g, a, b, gamma, method, thresh);

% Create the block (= correlation) matrix from a Gabor system

% BLOCKXXL

%

% Description : This creates the Walnut representation

% of the Gabor frame operator associated with g and gamma.

% Author : Peter Balazs (XXL)

%

%

% Input : g = a vector representing the Gabor atom (= window)

% a,b = two integers representing the lattice constants

% (they must be dividers of n)

% gamma = a vector representing a Gabor atom (optional)

% (Default: gamma = g)

% method = 0 - b x a block matrix (Default)

% 1 - a x b block matrix

% thresh = threshold for ignoring values (and setting to

% zero) (Default: 10^{-10})

%

% Output : M=a matrix (size n*a)

% Usage : blockxxl(g,a,b[,gamma]);

278



%

% Notes :

% method == 0 corresponds to the algorithm first used and implemented by

% Qiu and Feichtinger, where the block matrix is the condensed left b x n

% submatrix of the frame operator

% method == 1 uses the a x b matrix, which is derived from the upper

% a x n submatrix

% So (for mtehod == 1) this function calculates the non-zero block, the

% a x b matrix M such that, M[i,j] = S[i,i+j*n/b], where S is the Gabor

% frame operator for g, gamma, a, b.

% Every Gabor frame matrix can be reduced to this block. See [Qiu].

%

% See also: Blo2WalXXL.m which can be used to get the full Gabor matrix

% blocknon.m (basic program by Qiu)

%

% Literature : [Gro] K. Grchenig, Foundations of Time-Frequency

% Representation

% [Str] T. Strohmer, Numerical algorithms for discrete Gabor

% expansions

% [Qiu] S. Qiu, H.G. Feichtinger, Gabor-Type Matrices And

% Discrete Huge Gabor Transforms

% [Xxl] P. Balazs, Gabor frame multipliers with application to

% psychoacoustical masking

% (Ph.D. thesis, in preparation)

%

% Copyright : (c) NUHAG, Faculty of Math., University of Vienna, AUSTRIA

% http://nuhag.mat.uunivie.ac.at/

% (c) Acoustics Research Institute, Austrian Academy of

% Science

% http://www.kfs.oeaw.ac.at

%

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

% News : (18/06/2004)

% different synthese atom possible

% comments

% error checking

% (28/10/2004)

% some other small modifications

% (11/01/205)

% calculating either the a x b or the b x a matrix (which are

% not simple transposes of each other)

% V0.9

if nargin < 3;

disp(’3 inputs required.’);

return;

end;

n = length(g);

if nargin < 4;

gamma = g;

else

if n ~= length(gamma);

disp(’g and gamma must have the same size.’);

return;

end;

end;

if nargin < 5 | method ~= 1
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method = 0;

end;

if nargin < 6

thresh = 0.0000000001;

end;

F = n/b; T = n/a;

if F ~= round(F)

disp(sprintf(’Input b = %i is not a divisor of the n = length of g = %i.’,b,n));

return;

end;

if T ~= round(T)

disp(sprintf(’Input a = %i is not a divisor of the n = length of g = %i.’,b,n));

return;

end;

gg = [g, g]; % periodization

gaga = [gamma, gamma];

if method == 0 % b x a block (like qiu)

uu = zeros(b,a);

for jj=1:a,

per1 = jj:a:(n+jj-1);

for rr = 1:b;

pp = jj + (rr - 1)*F;

per2 = pp:a:(n+pp-1);

uu(rr,jj) = conj(gg(per2))*gaga(per1)’;

% This is (part of) the Walnut representation (see [Str]

% This is (more or less) the correlation function G_{(r-1).n} (j)

% (see [Gro]).

% ’more or less’ because it uses negative translation and circular rotation

% see also [Xxl] for details

end

end

M = zeros(b,a);

else % a x b block

uu = zeros(a,b);

for jj=1:a,

per1 = jj:a:(n+jj-1);

for rr = 1:b;

pp = jj + (rr - 1)*F;

per2 = pp:a:(n+pp-1);

uu(jj,rr) = conj(gg(per1))*gaga(per2)’;

end

end

M = zeros(a,b);

end;

ndx = find(abs(uu) > thresh);

M(ndx) = F*uu(ndx);
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B.4.3 Double Preconditioning For Gabor Frames

Included in this testfile, which was used for the numerical test in Section
3.4.3.7, is the code for single and double preconditioning (Lines 180-200).

% test double preconditioning

% by XXL (Peter Balazs)

% contact: xxl@kfs.oeaw.ac.at

% double preconditioning algorithm at lines 180-200

% for documentation see

% [xxl] Peter Balazs, ’Irregular And Regular Gabor Multipliers With

% Application To Psychoacutsic Masking’

%

% Known Problems: Some Strings are repeated because of the usage of sprintf

% and %s. This is necessary for Layout of this help, but seems to make some

% problems.

iter0 = 10; % number of different lattice parameters

iter1 = 1; % number of different tests (= different windows) for every

%set of parameter

t0 = cputime; % for measuring calculation time

if exist(’circessbet’) == 1

% incorporate past experiment in this one

if show == 1

disp(’Using old data to get bigger basis.’);

end;

n0 = n0+iter0*iter1;

else

if exist(’show’) ~= 1

show = 0; % print output? Or be quite (==0)

% use it outside to set it

end;

maxn = 1000; % maximal signal length

% initiate variables

diagsmal = 0;

noframe = 0;

diagesssmal = 0;

diagnonconv = 0;

diagmat = 0;

diagmaterr = 0;

diagessbet = 0;

rrd = maxn+1;

rrde = maxn+1;

rrnd = maxn+1;

nodouble = 0;

diagsupp = 0;

doubleessbet = 0;

essnodouble = 0;

circsmal = 0;

circesssmal = 0;

circnonconv = 0;

circmat = 0;

circmaterr = 0;

noiter = 0;

circessbet = 0;

rrc = maxn+1;
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rrce = maxn+1;

n0 = iter0*iter1;

methstr = ...

’First choosing b, then a and supp. So condition on a and supp.’;

winstr = ’Hamming’; % change with window !!!!

end;

for jj = 1:iter0

n = 1; %reset

nAlph = 1;

% make sure that we don’t choose a prime number (or one)

while isprime(n) | n == 1

n = ceil(maxn*rand(1,1));

% choose a random n in [1,maxn]

end;

alph = alldiv(n); % divisors or n

nAlph = length(alph);

% choose a support length (now done later)

% supp = alph(ceil(nAlph*rand(1,1)));

% supp = n;

% nAlph = length(find(alph <= supp));

% a <= nAlpg % else no frame is possible.

% choose arbitrary lattice parameter

b = alph(ceil(nAlph*rand(1,1)));

M = n/b;

% choose b such that a*b <= n, otherwise no frame is possible

naaa = length(find(alph <= M));

a = alph(ceil(naaa*rand(1,1)));

red = n/(a*b); %redundancy

N = n/a;

% choose a support length

% bigger than M such that we don’t have an diagonal frame operator

% alsu = alph(find(alph >= M));

% bigger than a such that we don’t have a frame

% alsu = alph(find(alph > M));

nsss = nAlph-naaa;

if nsss == 0

% supp <= M

% see tschurtschenthaler or qiu

% in this case it must be diagonal

% We could not avoid it

% either cound it

if 1 == 1

diagmat = diagmat+1;

diagsupp = diagsupp+1;

diagsmal = diagsmal+1;

if show == 1

disp(’The operator is diagonal.’);

end;

else

n0 = n0-1;

end
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% or just continue

continue;

else

supp = alph(naaa+ceil(nsss*rand(1,1)));

end;

if show == 1

disp(sprintf(...

’n = %g, a = %g, b = %g, red = %g; supp = %g’,n,a,b,red,supp));

end;

for ii = 1:iter1

% use this inner loop only if the window can change for the

% same n,a,b and supp for example with random windows.

g = zeros(1,n);

% (1) random window (white noise)

w = rand(1,supp);

% g(1:(floor(supp/2)+1))=w(ceil(supp/2):supp);

% g(n-ceil(supp/2)+2:n)=w(1:(ceil(supp/2)-1));

% (2) hanning window

% w = hanning(supp+2);

% g(1:(floor(supp/2)+1))=w(ceil(supp/2)+1:supp+1);

% g(n-ceil(supp/2)+2:n)=w(2:ceil(supp/2));

% winstr=’Hanning’

% change above !!!!

% (2b) hamming window

% winstr = ’Hamming’;

% change above

% w = hamming(supp);

g(1:(floor(supp/2)+1))=w(ceil(supp/2):supp);

g(n-ceil(supp/2)+2:n)=w(1:ceil(supp/2)-1);

% g(M+2) = 1

% in this case use iter1 = 1

% blackman(n)

% kaiser(n,6)

% (3) full Gaussian

% w = gaussnk(supp);

% g(1:(floor(supp/2)))=w(1:floor(supp/2));

% g(n-ceil(supp/2)+1:n)=w(floor(supp/2)+1:supp);

% in this case use iter1 = 1

%% (4) cut-off Gaussian

% supp2 = ceil(maxn*rand(1,1));

% w = gaussnk(supp2)

% g(1:(floor(supp/2)+1))=w(supp2-ceil(supp/2):supp2); (??)

% g(n-ceil(supp/2)+2:n)=w(1:(ceil(supp/2)-1));

% in this case use iter1 = 1

%% !!! Use Kaiser-Bessel with beta < 1 instead ?

B = blockxxl(g,a,b); % b x a block matrix

% mde = min(abs(B(1,:)));

if min(abs(B(1,:))) == 0

% disp(sprintf(’Minimal diagonal entry = %g’,mde));

if show == 1

disp(sprintf(’No frame’));

end;
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noframe = noframe+1;

continue;

end;

% Id=eye(n);

Id=zeros(b,a);

Id(1,:)=ones(1,a);

% Single Preconditioning: diagonal

P1=zeros(b,a);

P1(1,:)=1./(B(1,:));

% Block-Matrix with inverse diagonal elements

D=blockm(B,P1,n);

% Preconditioning by multiplication of blocks

diagnorm = walnorm(D-Id);

% ’distance’ of preconditioned matrix to the identiy

% Single Preconditioning: circulant

v=mean(B.’); % mean of rows of B

w=ifft(oneover(fft(v))); % deconvolution

P1=w.’*ones(1,a);

A=blockm(B,P1,n);

circnorm = walnorm(A-Id);

% Double Preconditioning

v=mean(D.’);

w=ifft(oneover(fft(v)));

P1=w.’*ones(1,a);

C=blockm(D,P1,n);

doublenorm = walnorm(C-Id);

% full n x n matrix

% S = blo2walxxl(B,n);

% rS = rank(S);

rS = n;

if rS ~= n

% n elements are linear dependent, only create a space

% with dimension = rank, so cannot be a frame.

noframe = noframe+1;

if show == 1

disp(sprintf(’No frame’));

end;

continue;

else

if show == 1

disp(sprintf(...

’Rank of S: %g, Diagonal Dominance Norm: %g, %s %g; %s : %g’, ...

’ Circulant Norm:’, ’ Double Preconditioning’, ...

rS, diagnorm, circnorm, doublenorm));

end;

end;

if doublenorm >= 0.99

if diagnorm >= 0.99 & circnorm >=0.99

% to prevent calculation erros

noiter = noiter+1;

if show == 1

disp(...

’The system is a frame, but no iterative scheme converges.’);

end;

else

nodouble = nodouble+1;
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if show == 1

disp(’-----------------------’);

disp(’!!! Bad Moon Rising !!!’);

disp(’-----------------------’);

end;

aand = a;

bbnd = b;

ggnd = g;

rrnd = min(rrnd,red);

% return;

% end if this bad case occurs

if diagnorm <= 0.9 | circnorm <= 0.9

essnodouble = essnodouble+1;

end;

end;

else

if show == 1

disp(’Double Preconditioning is convergent!!’);

end;

if diagnorm < doublenorm & diagnorm < circnorm

diagsmal = diagsmal+1;

if diagnorm <= 10*eps

diagmat = diagmat+1;

diagmaterr = max(diagmaterr,doublenorm);

else

relerr = diagnorm/doublenorm;

%if relerr > 0.01

if relerr < 0.1

diagessbet = diagessbet+1;

% if show == 1

disp(’Diagnorm is essentially smaller’);

%end;

aaed = a;

bbed = b;

gged = g;

rred = min(rrd,red);

end;

if relerr > diagesssmal

diagesssmal = relerr;

% if show == 1

% disp(’Diagnorm is smaller’);

% end;

% aad = a;

% bbd = b;

% ggd = g;

% rrd = min(rrd,red):

end;

end;

elseif circnorm < doublenorm

circsmal = circsmal+1;

if circnorm >= 1

circnonconv = circnonconv+1;

elseif circnorm <= 10*eps

circmat = circmat+1;

circmaterr = max(circmaterr,doublenorm);

else

relerr = circnorm/doublenorm;

% if relerr > 0.01

if relerr < 0.1

circessbet = circessbet+1;

%if show == 1

disp(’Circnorm is essentially smaller’);
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%end;

aace = a;

bbce = b;

ggce = g;

rrce = min(rrd,red);

end;

if relerr > circesssmal

circesssmal = relerr;

% aac = a

% bbc = b

% ggc = g

% rrc = min(rrc,red)

end;

end;

elseif 10*doublenorm < diagnorm & 10*doublenorm < circnorm

doubleessbet = doubleessbet+1;

% if show == 1

disp(sprintf(...

’Doublenorm is essentially smaller, a = %g, b=%g’,a,b));

% end;

adde = a;

bdde = b;

gdde = g;

rdde = min(rrd,red);

end;

end;

end;

end;

t1 = cputime;

disp(sprintf(’time = %g s’,t1-t0));

disp(methstr);

disp(sprintf(’We have tested %g times using a %s window’,n0,winstr));

disp(sprintf(...

’In %g cases (%g percent) the Gabor system was no frame.’,noframe,...

noframe/n0*100));

disp(sprintf(...

’In %g cases (%g percent) no norm was smaller than 1.’,noiter,...

noiter/n0*100));

disp(sprintf(...

’%g times the diagonal norm was smaller than the double precond norm’,...

diagsmal));

disp(sprintf(’1.) In %g cases the Frame Matrix is already diagonal’, ...

diagmat));

disp(sprintf(...

’ and the difference is only due to precision errors (%g).’,...

diagmaterr));

disp(sprintf(’ In %g cases this is due to the support property.’,...

diagsupp));

disp(sprintf(...

’2.) the rest (%g cases): here the maximal difference was (relative) %g.’,...

diagsmal-diagmat,diagesssmal));

disp(sprintf(’Only in %g cases the difference was bigger than 1 percent.’,...

diagessbet));

% if rrde ~= maxn+1

% disp(sprintf(...

% ’The minimal redundancy for which the diagonal norm

% was essential smaller was %g.’,rrde));

% end;

% disp(’---------------------------------------------------------------’);

disp(sprintf(...

’%g times the circulant norm was smaller than the double precond norm’,...

circsmal));
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disp(sprintf(...

’1.) In %g cases the Frame Matrix is already circulant’,circmat));

disp(sprintf(...

’ and the difference is only due to precision errors (%g).’,...

circmaterr));

disp(sprintf(...

’2.) the rest (%g cases): here the maximal difference was (relative) %g.’,...

circsmal-circmat,circesssmal));

disp(sprintf(...

’Only in %g cases the difference was bigger than 1 percent.’,...

circessbet));

% if rrc ~= maxn+1

% disp(sprintf(...

% ’The minimal redundancy for the circulant case was %g, for which

% the error was

% essential in the circulant case was %g.’,rrc,rrce));

% if rrce ~= maxn+1

% disp(sprintf(’The minimal redundancy for which the error was essential

% in the circulant case was %g.’,rrce));

% end;

% end;

if nodouble ~= 0

disp(sprintf(’*ATTENTION* There was %g case, %s’,...

’when a single preconditiner would have converged, but the double didnt’,...

nodouble));

disp(sprintf(’But only in %g cases, the smaller norm was < 0.9.’,...

essnodouble));

end;

disp(sprintf(’Heureka! In %g cases the double preconditioning norm %s’,...

’was essentially smaller (factor:10!).’,doubleessbet));
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Index

δ-oscillation, 107
δ-separated sequence, 101
δ-similar, 106
ω-independent, 226

algorithm
Jacobi, 132
Neumann, 228
splitting method, 132
conjugate gradient, 46
frame, 46

amalgam space, 95
auto-correlation matrix, 135

Balian Low theorem, 95
Banach algebra, 229
Banach algebra homomorphism, 229
Banach algebra monomorphism, 229
Banach spaces, time-frequency homo-

geneous, 90
bark frequency scale, 194
bases, 21
basis

orthogonal, 230
Bessel multiplier, 58
Bessel sequences, 3

classification, 10
classification with ONBs, 20
operators applied on, 14
union of, 7

biorthogonal sequences, 21, 229
bounded function, 217
bounded uniform partition of unity,

96

BUPU, 96
smooth, 96

Cauchy-Schwarz inequality, 216
circulant matrix, 143
closed range theorem, 228
cochlea, 192
condition-number, 133
conjugate gradient algorithm, 46
consistent, 131
convergent, 131
convolution, 244
correlation function, 93
critical band, 194
cross Gram matrix, 24

diagonal matrix, 144
Dirac-distribution, 251
dual window, 92

eigenvalue, 236

Feichtinger’s algebra, 98
finite rank, 235
fourier transformation, 244
frame

algorithm, 46
well-balanced, 70

frame multiplier, 57
frame sequences, 3

classification, 10
classification with ONBs, 20
operators applied on, 14
orthogonal projection with, 13

frame transformation matrix, 46
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frames, 2
analysis operator, 4
bounds, 3, 13
canonical dual, 8
classification, 10
classification with ONBs, 20
describing operators, 15, 50
dual, 8
exact, 3
frame operator, 4
operators applied on, 14
overcomplete, 3
Parseval, 32
self-dual, 32
synthesis operator, 4
tight, 3
union of, 7

Frobenius inner product, 53
function

kernel, 224
range, 224

functionals, 218
functions

bounded, 247
with compact support, 247

Gabor multiplier, 109
Gabor systems, 92

redundancy, 95
irregular, 100

Gabor-type matrix, 155
Gram matrix, 21, 24

infinity norm, 216
inner product, 216
involution, 244
irregular Gabor frame, 100
irregular Gabor systems, 100
isometrically translation invariant, 96
isometry, 218
isomorphism, 226

iteration, 131
consistent, 131
convergent, 131
linear, 131

Jacobi algorithm, 132
Janssen matrix, 139
Janssen representation, 94

Kohn-Nirenberg correspondence, 111
Kohn-Nirenberg symbol, 111
Kronecker product, 234
Kronecker symbol, 134

lattice, 92, 100
adjoint, 94

lattices, δ-similar, 106
linear function, 217
linearly independent, 215
local function space, 248
localizable, 96
lower Beurling density, 101
lower frame bound, 3

masking
simultaneous, 195

matrices
Frobenius inner product, 53
spectral radius, 221
spectrum, 221
eigenvalue, 221
eigenvector, 221
Frobenius norm, 220
Hilbert Schmidt norm, 220, 221
inner product, 220
mixed norm, 221
operator norm, 220

matrix
(a, b)-Walnut, 155
a-block-circulant, 152
b-block-diagonal, 149
auto-correlation, 135
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FFT, 222
Fourier, 222
Janssen, 139
non-zero block, 135
with b diagonal blocks, 149
circulant, 143
diagonal, 144
Gabor-type, 155
induced by an operator, 17
Janssen norm, 160
modulation, 141
translation, 140
Walnut norm, 160
with a circulant blocks, 152

Matrix Fourier Transformation, 145
MFT, 145
minimal, 226
modulation, 88
modulation matrix, 141
modulation space, 98
multi-index, 245

Neumann algorithm, 228
non-zero block matrix, 135
norm

nuclear, 238
trace class, 238

normalized, 3
norms

Janssen, 160
Walnut, 160

ONB, 230
operator, 218

adjoint, 218, 231
Hilbert Schmidt, 240
induced by a matrix, 17
multiplication, 245
normal, 231
partial derivative, 245
positive, 232

self-adjoint, 231
spectrum, 236
trace, 239
trace class, 237
unitary, 231

p-norm, 216
PDO, 111
phase vocoder, 85
pinna, 192
preconditioning, 133

by circulant matrices, 175
by diagonal matrices, 171
double, 176

pseudodifferential operator, 111
pseudoinverse, 242, 243

redundancy, 95
relatively separated, 101
relevance threshold, 197
Riesz bases, 22

describing operators, 23
Riesz sequence, 22
Rihaczek distribution, 111
Ron-Shen duality principle , 95

Schur’s lemma, 232
Schwartz class, 249
semi-normalized sequence, 23
separated sequence, 101
sequence

of translates, 114
sequences

δ-separated, 101
associated analysis operator, 6
associated frame operator, 6
associated synthesis operator, 6
normalized, 3
biorthogonal, 229
complete, 225
orthogonal, 230
relatively separated, 101
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separated, 101
total, 225

Shah-distribution, 251
Short Time Fourier Transformation,

see STFT
singular values, 237
spectral radius formula, 222
spectrogram, 88
splitting method, 132
spreading function, 113
STFT, 88

inversion formula, 91
orthogonality relations, 91
window, 88

symbols
O(fk,gj) (M), 16
Aopt, 13
Bopt, 13
C(Rd), 247
CG, 4
Cgk

, 5
D(Λ), 101
D+(Λ), 101
D−(Λ), 101
Dα, 245
DG, 4
Dgk

, 5

E
(b)
k , 148

Gn, 93
Ggk

, 24
L∞(Rd), 247
Lp(Rd), 247
Lp,qm (R2d), 249
M , 96
M (j), 220
Mω, 88
Mi, 220
Mm,n, 219
Qh, 101
S0(R

d), 98

SG, 4
Sgk

, 5
Tτ , 88
V , 215
Xα, 245
B, 224
HS, 240
Mp,q

m (Rd), 98
W (Lp,qm ), 95
δi,j, 215

Â, 145
f̂ , 244
[T ], 237
⌊x⌋, 53

E (b×b)
k,l , 148

K(B1,B2), 235
Mm, 58
S, 249
M(fk,gj) (O), 16
F(A), 145
Matn(x), 54
diag(M), 220
diag(v), 57, 220
‖M‖Op, 220
‖M‖fro, 220
ω(t), 88
π ((τ, ω)), 88
σG(M), 58
G̃, 8
g̃, 92
g̃k, 8
c, 246
c0, 246
cc, 245
c2c , 36
f ∗ g, 244
ker(f), 224
lp, 246
lp,q, 221
lp,qm , 221
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ran(f), 224
Mm,F ,G, 57
Mm,fk,gk

, 57
Mm,gk

, 57
vec(n)M , 54
G, 2
δi, 58
π2(λ), 110
ρ(A), 221
∼, 54
Vgf(t, ω), 88
Floc(R

d), 248
g∗, 244
Ggk,g

′

k
, 25

PV , 13
W (Rd), 92

tempered distributions, 250
tensor product

outer, 234
inner, 234
rank-one operator, 234

theorem
closed range, 228
Fubini, 214
Hölder’s, 246
Parseval’s, 230
Plancherel, 244
Plancherel’s, 230
Poisson, 223, 244
spectral, 236
Tonelli, 214

time-frequency homogeneous, 90
time-frequency shift of operators, 110,

112
time-frequency shifts, 88
tonotopy, 193
translation, 88
translation matrix, 140
twisted convolution, 158
tympanic membrane, 192

unconditional convergence, 225
uniform Beurling density, 101
upper Beurling density, 101
upper frame bound, 3
upper symbol, 58

Walnut matrix, 155
Walnut’s representation, 93
weight function, 249
weighted mixed-norm space, 249
weights

v-moderate, 249
submultiplicative, 249

well-balanced, 70
Wexler-Raz biorthogonality relation,

94
Wiener amalgam space, 96
Wiener space, 92
window, 88
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