% Prop11InvMultOpRun: Inversion of Frame multiplier according to Prop. 11
% Run of the function Prop11InvMultOp(c,r,TPhi,TG,m,e)
% with given input-parameters
%function y= Prop11InvMultOpRun;
ltfatstart;
c=3; % the number c of the frame vectors
r=2; % the number r of the coordinates of the frame vectors
TPhi=[2 -1 7; 1 -2 4]; %the synthesis matrix (rxc) of the frame Phi
TPsi= [4 0 -1; 0 -0.7 -0.1]; %the synthesis matrix (rxc) of an approximate dual frame Psi of Phi:
m=[1 2 3]; %the elements of the positive symbol m (c numbers in a row):
e=1/100000; %the aimed error bound
[m,TPsi,M1,M2,M1inv,M2inv,n] = Prop11InvMultOp(c,r,TPhi,TPsi,m,e);
M1inv % the inverse matrix of M1 via the iterative algorithm in Prop11InvMultOp
%If one wants to compare M1inv with the inverse matrix calculated with inv-function of Matlab
disp('Compare M1inv to the inverted matrix via Matlab:')
M1invMatlab=inv(M1)
M2inv % the inverse matrix of M2 via the iterative algorithm in Prop11InvMultOp
%If one wants to compare M2inv with the inverse matrix calculated with inv-function of Matlab
disp('Compare M2inv to the inverted matrix via Matlab:')
M2invMatlab=inv(M2)
n
%end