Physikalische und Numerische Akustik - Laufende Projekte

Introduction

Railway vehicles passing through tight curves can produce a high pitched noise called curve squeal. Curve squeal is a very salient type of noise located in the high frequency range that can range between a tonal narrow band and a wide band noise. The reason for the tonal noise is lateral creepage on the top of the rail, which excites wheel vibration at frequencies corresponding to their modes. Wide band noise, however, is caused by wheel flanges touching the rail.

Aims

The project PAAB aims at investigating the effect on the perceived annoyance of such noises using in a perception test. Using the resulting perceptual characterization of curve squeal should aid in more adequately considering this type of noise in noise mapping.

Methods

Based on previous conventional large-scale emission measurements as well as new measurements at immission distances using a head-and-torso-simulator representative samples for curve squeal will be derived and used in a perception test. This will also be aided by using synthetic well defined curve squeal noise.

PAAB is funded by the FFG (project 860523) and the Austrian Federal Railways (ÖBB). The project is done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technololgy (project leader), Kirisits Engineering Consultants, and psiacoustic Umweltforschung und Engineering GmbH.

 

 

Das Projekt PASS, welches in Kooperation mit dem IEW der TU Wien und psiacoustic GmbH durchgeführt wird, beschäftigt sich mit der psychoakustischen Bewertung von Lärm. Aufbauend auf den Ergebnissen des Projektes RELSKG werden dabei hohe und niedrige Lärmschutzwände numerisch simuliert mittels der 2.5 dimensionalen Randelemente Methode (2.5 D). Der Vergleich mit Messungen zeigt, dass die Annahme einer inkohärenten Linienquelle, wie sie mit der 2.5 D Methode möglich ist, für die Reproduktion der Messergebnisse erforderlich ist. Zusätzlich werden Schienenstegdämpfer aus Messdaten psychoakustisch bewertet. Die Bewertung erfolgt in zwei Tests mit 40 Probanden. Der erste Test vergleicht die relative Lästigkeit und der zweite die Schwellen für lästiger bzw. weniger lästig. Es ergab sich, dass Güterzüge bei gleichen A-Pegel als weniger lästig als Personenzüge eingestuft werden und dass bei gleichen A-Pegel der Lärm hinter einer Lärmschutzwand als geringfügig lästiger empfunden wird. Das Projekt starte in 2013 und läuft bis Ende 2014.

Objective:

In order to numerically calculate individual head-related transfer functions (HRTFs), a boundary element model (BEM) was developed. This model makes it possible to calculate the sound pressure at the head that is caused by different external sound sources with frequencies up to 20,000 Hz.

Method:

In engineering, the traditional BEM is widely used for solving problems. However, the computational effort of the BEM grows quadratically with the number of unknowns. This is one reason why the traditional BEM cannot be used for large models, even on highly advanced computers. In order to calculate the sound pressure at the head at high frequencies, very fine meshes need to be used. These meshes result in large systems of equations. Nevertheless, to be able to use the BEM, the equations must be combined with the Fast Multipole Method (FMM). With the FMM, the resulting matrices can be kept smaller, thus allowing the numeric solving of the Helmholtz equation with feasible effort and almost no accuracy loss as compared to the traditional BEM.

Application:

The geometry of the head (especially the form of the outer ear or pinna) acts as a kind of filter. This geometry is very important in localizing sound in the vertical direction and distinguishing between sounds coming from the front or the back. The BEM model can be used to numerically calculate these filter functions, which are dependent on the position and the frequency of the sound source.

Funding:

FWF (Austrian Science Fund): Project #P18401-B15

Publications:

  • Kreuzer, W., Majdak, P., Chen, Z. (2009): Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range, in: J. Acoust .Soc. Am. 126, 1280-1290.
  • Kreuzer, W.  and Chen, Z. S. (2008). "A Fast Multipole Boundary Element Method for calculating HRTFs," AES preprint  7020, AES Convention, Vienna.

Introduction                                                                                                                                                   

Rumble strips are (typically periodic) grooves place at the side of the road. When a vehicle passes over a rumble strip the noise and vibration in the car should alert the driver of the imminent danger of running off the road. Thus, rumble strips have been shown to have a positive effect on traffic safety. Unfortunately, the use of rumble strips in the close vicinity of populated areas is problematic due to the increased noise burden.

Aims

The aim of the project LARS (LärmArme RumpelStreifen or low noise rumble strips) was to find rumble strip designs that cause less noise in the environment without significantly affecting the alerting effect inside the vehicle. For this purpose, a number of conventional designs as well as three alternative concepts were investigated: conical grooves to guide the noise under the car, pseudo-random groove spacing to reduce tonality and thus annoyance, as well as sinusoidal depth profiles which should produce mostly vibration and only little noise and which are already used in practice.

Methods

Two test tracks were established covering a range of different milling patterns in order to measure the effects of rumble strips for a car and a commercial vehicle running over them. Acoustic measurements using microphones and a head-and-torso-simulator were done inside the vehicle as well as in the surroundings of the track. Furthermore, the vibration of the steering wheel and the driver seat were measured. Using the acoustics measurements, synthetic rumble strip noises were produced, in order to get a wider range of possible rumble strip designs than by pure measurements.

Perception tests with 16 listeners were performed where the annoyance of the immissions as well as the urgency and reaction times for the sounds generated in the interior were determined also using the synthetic stimuli.

LARS was funded by the FFG (project 840515) and the ASFINAG. The project was done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technology, and ABF Strassensanierungs GmbH.

Biotop Beschreibung
Workflow Biotop

Einführung

Die Lokalisierung von Schallquellen spielt eine wichtige Rolle im täglichem Leben. Die Form des menschlichen Kopfs, des Torsos und vor allem des Außenohrs (Pinna) bewirken einen Filtereffekt für einfallenden Schall und spielen daher eine wichtige Rolle bei der Ortung einer Schallquelle. Dieser Filtereffekt kann mittels der s.g. head related transfer functions (HRTFs, kopfbezogene Übertragungsfunktionen) beschrieben werden. Diese Filterfunktionen können mittels numerischer Methoden (zum Beispiel der Randelemente Methode, BEM) berechnet werden. In BIOTOP sollen diese Berechnungen durch Anwendung adaptiver Wavelet und Frame Methoden effizienter gemacht werden.

Ziel

Verglichen mit den herkömmlichen BEM Ansatzfunktionen haben Wavelets den Vorteil, besser an gegebene Schallverteilungen angepasst werden zu können. Als Verallgemeinerung von Wavelets sollen Frames dabei helfen, eine noch flexiblere Berechnungsmethode und damit eine noch bessere Anpassung an das gegebene Problem zu entwickeln. BIOTOP verbindet abstrakte mathematische Theorie mit numerischer und angewandter Mathematik. BIOTOP ist ein internationales DACH-Projekt (DFG-FWF-SFG) zwischen der Philipps-Universität Marburg (Stephan Dahlke), der Unicersität Basel (Helmut Harbrecht) und dem Institut für Schallforschung. Die gemeinsame Erfahrung dieser drei Forschungsgruppen soll helfen, neue numerische Strategien und Methoden zu entwickeln. Das Projekt wird vom FWF (Proj. Nummer: I-1018 N25) gefördert.

 

Beschreibung

Eisenbahntunnel vermeiden direkte akustische Beeinträchtigungen durch den Bahnverkehr. Schwingungen aus Tunneln breiten sich jedoch im Boden aus und führen zu Störungen durch wahrgenommene niedrigfrequente Vibrationen.

Ziel dieses Projektes ist es, ein mathematisches Modell zu entwickeln und zu implementieren, das eine bewegte schwingende Last berücksichtigt. Außerdem wird der umgebende Boden als anisotropes Material modelliert, das aus beliebig orientierten Schichten besteht.

 

Methoden

Die Ausbreitung der Vibrationen im Tunnelinneren werden mittels einer finiten Elemente Methode (FEM) berechnet, in der auch die "Superstruktur" des Tunnels und der Gleisanlagen berücksichtigt werden können. Schwingungen außerhalb des Tunnels, im Erdreich, werden durch die Randelementemethode (boundary element method (BEM)) modelliert. Für ein detailiertes Model des ganzen Systems müssen beide Ansätze miteinander gekoppelt werden.

Computer werden ständig schneller und die schnelle Entwicklung von Audio-Interface and Audio-Transmissions Technologien haben zu einem neuen Zeitalter von Audio-Systemen geführt, die mittels Surround Lautsprechern räumliche Schallerlebnisse reproduzieren können.

Viele dieser Anwendungen benötigen eine genaue, effiziente und robuste Darstellung des Schalls in der Raum-Zeit-Frequenzebene. Das gemeinesame Projekt von ISF und IRCAM verbindet die mathematischen Konzepte, die am ARI verwendet und entwickelt werden mit der profunden Kenntnis in Signalverarbeitung in Echtzeit am IRCAM. Das Projekt versucht grundlegende Fragen in beiden Forschungsfeldern zu beantworten und hat als Ziel die Entwicklung von verbesserten Methoden für die oben erwähnten Anwendungen.

Spezielle Fragen, die in diesem Projekt geklärt werden sollen, sind:

  • Kann mittels Wavelets und Frames eine effiziente Raum-Zeit-Frequenz Darstellung von Wellenfeldern gefunden werden, die robuster als derzeitig existente Methoden sind?
  • Ist es möglich, auf Frames basierenden Methoden an ein (sphärisches) Lautsprecher-, bzw. Mikrophonarray mit vorgegeben Anordnung von Lautsprechen, bzw. Mikrophonen anzupassen (z.B. das 64 Kanal Array am IRCAM)
  • Wie kann das akustische Feld auf einer Kugel mit Frames dargestellt werden, um bessere Raum-Zeit-Frequenz Darstellung des akustischen Felds an bestimmten Teilen der Kugel zu erhalten?
  • Ist es möglich, diese Raum-Zeit-Frequenz Darstellung in mehreren Auflösungen für Raumaufnahmen mittles sphärischen Mehrkanal-Mikrophonarray zu verwenden (z.B. um eine höhere räumliche Auflösung von frühen Raumreflexionen zu erreichen)?

Objective:

Standard noise mapping software use geometrical approaches to determine insertion loss for a noise barrier. These methods are not well suited for evaluating complex geometries e.g. curved noise barriers or noise barriers with multiple refracting edges. Here, we aim at deriving frequency and source- as well as receiver-position dependent adjustments using the boundary element method. Further, the effect of absorbing layers will be investigated as a function of the geometry. Results will be incorporated into a standard noise mapping software.

Method:

The cross-sections of different geometries are first parameterized and discretized and then evaluated using two-dimensional boundary element simulations. The BEM code was developed at our institute. Different parameter sets are evaluated in order to derive the adjustments for the specific geometries compared to a straight noise barrier. To make the simulations more realistic, a grassland impedance model is used instead of a fully reflecting half plane. Simulations will also be evaluated using measurements from actual noise barriers.

Wirkung einer T-Wand bei 800 Hz

Project partners:

  • TAS Schreiner (measurements)
  • Soundplan (implementation in sound mapping software)

Funding:

This project is funded from the VIF2011 call of the FFG (BMVIT, ASFINAG, ÖBB)

Beschreibung

Computermodelle für Sprachproduktion und Sprachanalyse sind sein den 1960er Jahren von wissenschaftlichen Interesse. Viele Modelle ersetzen den Vokaltrakt durch eine segementierte Röhre, wenn aber Nasale wie /n/ und /m/ oder nasaliesierte Vokale betrachtet werden sollen, sind Ein-Rohr Modelle nicht mehr ausreichend, weil durch die Nase ein zusätzlicher Resonanzkörper an den Vokaltrakt gekoppelt wird. Daher ist es notwendig, ein verzweigtes Rohrmodell zu betrachten, bei denen die Bestimmung der Querschnittsflächen aus einen vorgegebenen Sprachsignal nicht mehr trivial ist, und im Allgemeinen die Lösung eines nicht-linearen Gleichungssystems voraussetzt. 

Das Gleichungssystem ist überbestimmt, und wir führen z.B. mittels probabilistischen Ansätzen (Bayesscher Statistik) zusätzliche Bedingungen ein, z.B. obere und untere Beschränkungen der Flächenfunktionen oder Glattheitsannahmen.