Localization of sound sources is an important task of the human auditory system and much research effort has been put into the development of audio devices for virtual acoustics, i.e. the reproduction of spatial sounds via headphones. Even though the process of sound localization is not completely understood yet, it is possible to simulate spatial sounds via headphones by using head-related transfer functions (HRTFs). HRTFs describe the filtering of the incoming sound due to head, torso and particularly the pinna and thus they strongly depend on the particular details in the listener's geometry. In general, for realistic spatial-sound reproduction via headphones, the individual HRTFs must be measured. As of 2012, the available HRTF acquisition methods were acoustic measurements: a technically-complex process, involving placing microphones into the listener's ears, and lasting for tens of minutes.

In LocaPhoto, we were working on an easily accessible method to acquire and evaluate listener-specific HRTFs. The idea was to numerically calculate HRTFs based on a geometrical representation of the listener (3-D mesh) obtained from 2-D photos by means of photogrammetric reconstruction.

As a result, we have developed a software package for numerical HRTF calculations, a method for geometry acquisition, and models able to evaluate HRTFs in terms of broadband ITDs and sagittal-plane sound localization performance.

 

Further information:

http://www.kfs.oeaw.ac.at/LocaPhoto