This web page provides resources for the figures and the implementation of inversion of frame multipliers in the research manuscript:

"A survey on the unconditional convergence and the invertibility of multipliers with implementation"

Diana T. Stoeva and Peter Balazs

Abstract:

The paper presents a survey over frame multipliers and related concepts. In particular, it includes a short motivation of why multipliers are of interest to consider, a review as well as extension of recent results, devoted to the unconditional convergence of multipliers, sufficient and/or necessary conditions for the invertibility of multipliers, and representation of the inverse via Newmann-like series and via multipliers with particular parameters. Multipliers for frames with specific structure, namely, Gabor and wavelet multipliers, are also considered. Some of the results for the representation of the inverse multiplier are implemented in Matlab codes and the implementations are described.

Here we provide:

- the scripts which were used to generate Fig. 1 and Fig.2 in the paper;

- implementation of Propositions 8, 9, and 11, written in Matlab-codes using the Matlab/Octave toolbox Linear Time-Frequency Analysis (LTFAT)  (version ... and above).

In order to run the codes, provided below, first one needs to install the toolbox LTFAT, freely available at Sourceforge.

I. Fig. 1 in the paper and the script, which was used to generate this figure (an illustrative example to visualize a multiplier). Fig.1 An illustrative example to visualize a multiplier.

(TOP LEFT) The time-frequency representation of the music signal $f$. (TOP RIGHT) The symbol $m$, found by a (manual) estimation of the

time-frequency region of the singer's voice. (BOTTOM LEFT) The multiplication in the TF domain. (BOTTOM RIGHT) Time-frequency representation

of $M_{m,\widetilde \Psi,\Psi}f$.

Fig. 1 was produced via the script  testGabMulExp_new.m using the original sound-file originalsignal.wav and the manually determined symbol Symbol6_BW.png.

The script also provides the modified signal (obtained when applying the symbol/mask on the original signal) and you can listen it here.

II. Implementation of inversion of multipliers according to Section 3.2.3 of the paper.

II.1. Implementation of Proposition 8

(a) Implementation of inversion of multipliers $M_{m,\Phi,\Psi}$ (M1) and $M_{m,\Psi,\Phi}$ (M2) for positive m according to Proposition 8 is done in the program Prop8MultiplierInversionOp.m, which involves the function Prop8InvMultOp.m.

function [TPsi,M1,M2,M1inv,M2inv,n] = Prop8InvMultOp(c,r,TPhi,TG,m,e)

Running the program "Prop8MultiplierInversionOp.m", the user will be required to enter the following parameters (which are the input-parameters for the function Prop8InvMultOp.m):
c - the number of the frame vectors;
r - the number of the coordinates of the frame vectors;
TPhi - the synthesis matrix (rxc) of the frame $\Phi$;
TG - the synthesis matrix (rxc) of a frame G (with the meaning of $\Psi-\Phi$);
m -  the symbol of the multiplier (c numbers in a row);
e - the desired error bound.

Note:
- the program requires entries of m until positive m is entered;
- after entering TPhi, TG, and positive m, the program checks if they satisfy the assumptions of Prop. 8 and if not,
the program adjusts TG by multiplication with an appropriate constant in order to be within the settings of Prop. 8.

The implementation is done using an iterative algorithm according to Prop. 8, until one reaches the desired error-bound e.

The output of the program "Prop8MultiplierInversionOp.m'':
TPsi - the synthesis operator of $\Psi$,
M1 - the multiplier $M_{m,\Phi,\Psi}$,
M2 - the multiplier $M_{m,\Psi,\Phi}$,
M1inv - the iteratively inverted M1,
M2inv -  the iteratively inverted M2,
M1invMatlab - the inversion of M1 using the matlab-command inv'' (for comparison reason),
M2invMatlab - the inversion of M2 using the matlab-command inv'' (for comparison reason),
n - the  number of the iteration steps.

Note:
After presenting the output parameters, the program allows the user to
- either enter new $TG$ and new error-bound e, and repeat the inversion procedure,
- or to terminate the program by pressing zero.

A demo-file (applying "Prop8InvMultOp.m" with concrete parameters) is available in the script Prop8InvMultOpRun.m.

(b) Implementation of computation of $M_{m,\Phi,\Psi}^{-1}f$ and $M_{m,\Psi,\Phi}^{-1}f$ for given f (and for positive m) is done in the program Prop8MultiplierInversionf.m, which involves the function Prop8InvMultf.m.

function [TPsi,M1,M2,M1invf,M2invf,n] = Prop8InvMultf(c,r,TPhi,TG,m,f,e)

The implementation goes in a similar way as in (a), requiring one more input, namely f, and using appropriate modification of the iteration steps.

A demo-file (applying Prop8InvMultf.m with concrete parameters) is available in the script Prop8InvMultfRun.m.

(c) Implementation of computation of $M_{m,\Phi,\Psi}^{-1}$ and $M_{m,\Psi,\Phi}^{-1}$ for positive $m$ and Gabor frames $\Phi$ and $\Psi$ is done in the program Prop8MultiplierInversionOpGabor.m, which involves the function Prop8InvMultOpGabor.m.

function [TPhi,TPsi,M1,M2,M1inv,M2inv,n] = Prop8InvMultOpGabor(L,a, M,gPhi,gG,m,e)

The implementation of the inversion is like the one in (a), but using $\Phi$ and $\Psi$ which are Gabor frames.

The input parameters of "Prop8MultiplierInversionOpGabor.m'':
L - the length of the transform,
a - the time-shift (should be divisor of L),
M - the number of channels (should be divisor of L and bigger or equal to a),
gPhi - the window function of the Gabor frame Phi,
gG - the window function of the Gabor frame G(with the meaning of Psi-Phi),
TPhi - the synthesis matrix ($rxc$) of the frame $\Phi$,
TG - the synthesis matrix ($rxc$) of a frame $G$ (with the meaning of $\Psi-\Phi$),
m -  the symbol of the multiplier (ML/a positive numbers),
e - the desired error bound.

The output parameters of "Prop8MultiplierInversionOpGabor.m'':
TPhi - the synthesis operator of the frame Phi,
and the rest are like the output parameters of "Prop8MultiplierInversionOp.m'' (see above, the implementation of Proposition 8(a)).

A demo-file (applying "Prop8InvMultOpGabor.m" with concrete parameters) is available in the code Prop8InvMultOpGaborRun.m.

For the convergence rate of this algorithm, see Fig.2 below and the script which was used to generate it.

II.2. Implementation of Proposition 9

Implementation of the inversion of $M_{m,\Phi,\Phi}$, $M_{m,\Phi,\Psi}$, and $M_{m,\Psi,\Phi}$ according to Proposition 9 is done in the program Prop9MultiplierInversionOp.m, which involves the function Prop9InvMultOp.m.

function [m,TPsi,M0,M1,M2,M0inv,n0,M1inv,M2inv,n] = Prop9InvMultOp(c,r,TPhi,TG,m,e)

Running the program "Prop9MultiplierInversionOp.m'', the user will be required to enter the same parameters as the ones for "Prop8MultiplierInversionOp.m'' (see above, the implementation of Proposition 8(a)).

Note:
- the program checks whether the entered TPhi and m satisfy the assumpitons of Prop. 9
and if not, the program adjusts m  to be within the settings of Prop. 9;
- the program checks whether the entered TPhi, TG, and the adjusted m satisfy the assumpitons of Prop. 9
and if not, the program adjusts TG by multiplication with an appropriate constant in order to be within the settings of Prop. 9.

The input parameters of "Prop9MultiplierInversionOp.m'' are like the ones in "Prop8MultiplierInversionOp.m" (see above, the implementation of Proposition 8(a)).

The output parameters of "Prop9MultiplierInversionOp.m'':
m - the symbol of the multiplier,
M0 - the multiplier $M_{m,\Phi,\Phi}$,
M0inv - the iteratively inverted M0,
n0 - the  number of the iteration steps for the inversion of M0,
and the rest are like the output parameters of "Prop8MultiplierInversionOp.m'' (see above, the implementation of Proposition 8(a)).

A demo-file (applying Prop9InvMultOp.m with concrete parameters) is available in the code Prop9InvMultOpRun.m.

II.3. Implementation of Proposition 11

Implementation of the inversion of  $M_{m,\Phi,\Psi}$ and $M_{m,\Psi,\Phi}$ according to Proposition 11 is done in the program Prop11MultiplierInversionOp.m, which involves the function Prop11InvMultOp.m.

function [m,TPsi,M1,M2,M1inv,M2inv,n] = Prop11InvMultOp(c,r,TPhi,TPsi,m,e)

Running the program "Prop11MultiplierInversionOp.m'', the user will be required to enter the following parameters (which are the input-parameters for the function "Prop11InvMultOp.m"):
c, r, TPhi, m, e - like the ones in "Prop8MultiplierInversionOp.m'' (see above, the implementation of Proposition 8(a)).
TPsi - the synthesis matrix (rxc) of an aproximate dual $\Psi$ of the frame $\Phi$.

Note:
- using the entered TPhi and TPsi, the program checks whether $\Psi$ is an approximate dual of $\Phi$
and if not, the program replaces $\Psi$ with the canonical dual of $\Phi$;
- after that the program checks whether $\Phi$, $\Psi$, and m satisfy the assumptions of Prop. 11
and if not, the program adjusts m.

The output parameters of the program  "Prop11MultiplierInversionOp.m'': The output parameters of Prop9MultiplierInversionOp.m'':
m - the symbol of the multiplier,
and the rest are like the output parameters of "Prop8MultiplierInversionOp.m'' (see above, the implementation of Proposition 8(a)).

A demo-file (applying Prop11InvMultOp.m with concrete parameters) is available in the code Prop11InvMultOpRun.m.

I. Fig. 2 in the paper and the script, which was used to generate this figure (the convergence rate of the algorithm in II.1.(c) above). Fig. 2. The convergence rate of Alg. 3 using base-10 logarithmic scale in the vertical axis and a
linear scale in the horizontal axis. Here the absolute error in each iteration is plotted in red, and
the convergence value predicted in Proposition 8 is plotted in blue.

Fig. 2 was produced using the script Prop8InvMultOpGaborPlotFigure.m which involves the function Prop8InvMultOpGaborForFigure.m.

## References:

•  D. T. Stoeva and P. Balazs, "On the unconditional convergence and invertibility of multipliers", arXiv.
•  Z. Průša,  P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, "The Large Time-Frequency Analysis Toolbox 2.0". In: Aramaki M., Derrien O., Kronland-Martinet R., Ystad S. (eds) Sound, Music, and Motion. CMMR 2013. Lecture Notes in Computer Science, vol 8905. Springer, Cham, (2014).

## Aktuelle Termine

#### Applied Harmonic Analysis and Friends

Strobl20

CANCELLED

June 1st - 5th 2020

Strobl, AUSTRIA

Weiterlesen ...

#### 23rd International Conference on Digital Audio EffectsDAFx2020

DAFx20

Will be now in 2021!

Sep 7th - 11th, 2021

Vienna, AUSTRIA

https://dafx2020.mdw.ac.at

Weiterlesen ...

#### DAGA 2021 - 47. Jahrestagung für Akustik

DAGA 2021

March 15th - 18th, 2021

Vienna, AUSTRIA

## Neuigkeiten

• #### DOC-Stipendiat Lindenbeck möchte Ertaubten das Zuhören erleichtern

25. Mai 2020

Anfang Mai startete ÖAW-Schallforscher Martin Lindenbeck sein Dissertationsprojekt „Towards Improving Selective Hearing in Cochlear-Implant Listeners“, für das er von der ÖAW mit einem DOC...

Weiterlesen...
• #### Postdoc researcher (f*m) (in Mathematics and Signal Processing in Acoustics)

14. Mai 2020

The Austrian Academy of Sciences (ÖAW), Austria’s central non-university research and science institution is offering a position as a Postdoc researcher (f*m) for research on frame theory and...

Weiterlesen...
• #### Der Tag gegen Lärm

29. April 2020

Der Tag gegen Lärm ist heute und dennoch ist es um ihn still geworden. Wir leben in einer Zeit, in der die Bewältigung von Krankheit, häuslicher Gewalt sowie der Einsamkeit und das Verlangen nach...

Weiterlesen...
• #### Ein Schrei aus der Stille zum Tag gegen Lärm 2020

24. April 2020

Am 29. April 2020 ist der internationale Tag gegen Lärm. An diesem Tag finden, normalerweise, jedes Jahr weltweit Veranstaltungen statt, die der Öffentlichkeit das gesellschaftlich äußerst relevante Thema...

Weiterlesen...
• #### Robert Baumgartner erhält hochdotierte FWF-Förderung für interdisziplinäres Zukunftskolleg

19. April 2020

Diesen April bewilligte der Wissenschaftsfonds FWF zum zweiten Mal sogenannte Zukunftskollegs (ZKs), in denen institutionsübergreifende Teams von jungen Wissenschafterinnen und Wissenschafter nach dem...

Weiterlesen...
• #### Mehr Corona-Tests mit altbekannten Verfahren

30. März 2020

Corona beherrscht derzeit die Berichterstattung aller Medien und kürzlich ist auch die Devise "Testen, testen, testen" immer wieder in den Fokus gerückt. Günther Koliander vom Institut für...

Weiterlesen...
• #### Schallforschung in der Corona-Quarantäne

27. März 2020

Die sozialen Kontakte sind aufgrund der Ausgangs- und Verkehrsbeschränkung extrem reduziert. In vielen Lebensbereichen sind Menschen eingeschränkt, viele Betriebe sind geschlossen und...

Weiterlesen...
• #### Deutsch in Österreich - Teil 2

28. Februar 2020

Das an der Universität Salzburg und dem ISF beheimatete Teilprojekt 02 des Sonderforschungsbereichs Deutsch in Österreich läuft jetzt schon 4 Jahre und wurde erst unlängst um 4 weitere Jahre...

Weiterlesen...
• #### Interview mit Peter Balazs

31. Januar 2020

Im folgenden Interview von Peter Balazs gibt es Interessantes zur aktuellen Schallforschung und dem diesjährigen Jahr des Schall zu erfahren. Das Auftaktevent des Internationalen Jahr des Schalls...

Weiterlesen...
• #### Mein Englisch klingt besser als Deins!

11. Februar 2020

Heute spricht Eva Reinisch vom Institut für Schallforschung der ÖAW über die kürzlich veröffentlichte Studie, die sich u.a. mit der Selbstüberschätzung von Englisch Lernenden beschäftigt hat. In der...

Weiterlesen...
• #### Öffentlicher Vortrag: Mathematik und Akustik

09. Januar 2020

Am Donnerstag 9. Jänner 2020 hält Peter Balazs seinen öffentlichen Vortrag über Mathematik und Akustik an der TU Wien im Rahmen des Forum Mathematik....

Weiterlesen...
• #### Youtube Video: Mathematik und Akustik

15. Januar 2020

Letzte Woche hat Peter Balazs über Mathematik und Akustik öffentlich gesprochen. Wer nicht dabei war kann sich hier das Youtube Video mit seinen...

Weiterlesen...