French-Austrian bilateral research project funded by the French National Agency of Research (ANR) and the Austrian Science Fund (FWF, project no. I 1362-N30). The project involves two academic partners, namely the Laboratory of Mechanics and Acoustics (LMA - CNRS UPR 7051, France) and the Acoustics Research Institute. At the ARI, two research groups are involved in the project: the Mathematics and Signal Processing in Acoustics and the Psychoacoustics and Experimental Audiology groups.

Principal investigators: Thibaud Necciari (ARI), Piotr Majdak (ARI) and Olivier Derrien (LMA).

Running period: 2014-2017 (project started on March 1, 2014).


One of the greatest challenges in signal processing is to develop efficient signal representations. An efficient representation extracts relevant information and describes it with a minimal amount of data. In the specific context of sound processing, and especially in audio coding, where the goal is to minimize the size of binary data required for storage or transmission, it is desirable that the representation takes into account human auditory perception and allows reconstruction with a controlled amount of perceived distortion. Over the last decades, many psychoacoustical studies investigated auditory masking, an important property of auditory perception. Masking refers to the degradation of the detection threshold of a sound in presence of another sound. The results were used to develop models of either spectral or temporal masking. Attempts were made to simply combine these models to account for time-frequency (t-f) masking effects in perceptual audio codecs. We recently conducted psychoacoustical studies on t-f masking. They revealed the inaccuracy of those models which revealed the inaccuracy of such simple models. These new data on t-f masking represent a crucial basis to account for masking effects in t-f representations of sounds. Although t-f representations are standard tools in audio processing, the development of a t-f representation of audio signals that is mathematically-founded, perception-based, perfectly invertible, and possibly with a minimum amount of redundancy, remains a challenge. POTION thus addresses the following questions:

  1. To what extent is it possible to obtain a perception-based (i.e., as close as possible to “what we see is what we hear”), perfectly invertible, and possibly minimally redundant t-f representation of sound signals? Such a representation is essential for modeling complex masking interactions in the t-f domain and is expected to improve our understanding of auditory processing of real-world sounds. Moreover, it is of fundamental interest for many audio applications involving sound analysis-synthesis.
  2. Is it possible to improve current perceptual audio codecs by considering a joint t-f approach? To reduce the size of digital audio files, perceptual audio codecs like MP3 decompose sounds into variable-length time segments, apply a frequency transform, and use masking models to control the sub-quantization of transform coefficients within each segment. Thus, current codecs follow mainly a spectral approach, although temporal masking effects are taken into account in some implementations. By combining an efficient perception-based t-f transform with a joint t-f masking model in an audio codec, we expect to achieve significant performance improvements.

Working program:

POTION is structured in three main tasks:

  1. Perception-based t-f representation of audio signals with perfect reconstruction: A linear and perfectly invertible t-f representation will be created by exploiting the recently developed non-stationary Gabor theory as a mathematical background. The transform will be designed so that t-f resolution mimics the t-f analysis properties by the auditory system and possibly no redundancy is introduced to maximize the coding efficiency.
  2. Development and implementation of a t-f masking model: Based on psychoacoustical data on t-f masking collected by the partners in previous projects and on literature data, a new, complex model of t-f masking will be developed and implemented in the computationally efficient representation built in task 1. Additional psychoacoustical data required for the development of the model, involving frequency, level, and duration effects in masking for either single or multiple maskers will be collected. The resulting signal processing algorithm should represent and re-synthesize only the perceptually relevant components of the signal. It will be calibrated and validated by conducting listening tests with synthetic and real-world sounds.
  3. Optimization of perceptual audio codecs: This task represents the main application of POTION. It will consist in combining the new efficient representation built in task 1 with the new t-f masking model built in task 2 for implementation in a perceptual audio codec.

More information on the project can be found on the POTION web page.


  • Chardon, G., Necciari, Th., Balazs, P. (2014): Perceptual matching pursuit with Gabor dictionaries and time-frequency masking, in: Proceedings of the 39th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014). Florence, Italy, 3126-3130. (proceedings) ICASSP 2014: Perceptual matching pursuit results

Related topics investigated at the ARI:

START project of P. Balazs.



Diese Seite ist eine Projektbeschreibung und als solche in englischer Sprache verfasst.

This international, multi-disciplinary and team-oriented project will expand the group Mathematics and Acoustical Signal Processing at the Acoustic Research Institute in cooperation with NuHAG Vienna (Hans G. Feichtinger, M. Dörfler, K. Gröchenig), Institute of Telecommunication Vienna (Franz Hlawatsch), LATP Marseille (Bruno Torrésani) LMA (Richard Kronland-Martinet). CAHR (Torsten Dau, Peter Soendergaard), the FYMA Louvain-la-Neuve (Jean-Pierre Antoine), AG Numerics (Stephan Dahlke), School of Electrical Engineering and Computer Science (Damian Marelli) as well as the BKA Wiesbaden (Timo Becker).

Within the institute the groups Audiological Acoustics and Psychoacoutics, Computational Acoustics, Acoustic Phonetics and Software Development are involved in the project.

This project is funded by the FWF as a START price . It is planned to run from May 2012 to April 2018.






General description:

We live in the age of information where the analysis, classification, and transmission of information is f essential importance. Signal processing tools and algorithms form the backbone of important technologieslike MP3, digital television, mobile phones and wireless networking. Many signal processing algorithms have been adapted for applications in audio and acoustics, also taking into account theproperties of the human auditory system.

The mathematical concept of frames describes a theoretical background for signal processing. Frames are generalizations of orthonormal bases that give more freedom for the analysis and modificationof information - however, this concept is still not firmly rooted in applied research. The link between the mathematical frame theory, the signal processing algorithms, their implementations andfinally acoustical applications is a very promising, synergetic combination of research in different fields.

Therefore the main goal of this multidisciplinary project is to

-> Establish Frame Theory as Theoretical Backbone of Acoustical Modeling

in particular in psychoacoustics, phonetic and computational acoustics as well as audio engineering.



For this auspicious connection of disciplines, FLAME will produce substantial impact on both the heory and applied research.

The theory-based part of FLAME consists of the following topics:

  • T1 Frame Analysis and Reconstruction Beyond Classical Approaches
  • T2 Frame Multipliers, Extended
  • T3 Novel Frame Representation of Operators Motivated by Computational Acoustics

The application-oriented part of FLAME consists of:

  • A1 Advanced Frame Methods for Perceptual Sparsity in the Time-Frequency Plane
  • A2 Advanced Frame Methods for the Analysis and Classification of Speech
  • A3 Advanced Frame Methods for Signal Enhancement and System Estimation

Press information:





From many previous applications, it is known that inverse problems often require a regularization that makes the inversion numerically stable. In this project, sequences that allow a bounded, injective analysis (that is not boundedly invertible) are investigated, .


Even for general sequences, analysis operator and synthesis operator can be defined. The first part of this project will investigate the most general results of these definitions. For example, it can be shown that the analysis operator is always a closed operator. Although it can be shown that the existence of another sequence that allows a perfect reconstruction fit can not be bounded, the question of how to construct such a "dual sequence" will be investigated.


Such sequences have already found applications in wavelet analysis, in which dual sequences were constructed algorithmically. Also, the original system investigated by Gabor with a redundancy of 1 satisfies this condition.


  • M. El-Gebeily, Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Saudi Arabia
  • J. P. Antoine, Unité de physique théorique et de physique mathématique – FYMA, Belgium


The ability of listeners to discriminate literal meanings from figurative language, affective language, or rhetorical devices such as irony is crucial for a successful social interaction. This discriminative ability might be reduced in listeners supplied with cochlear implants (CIs), widely used auditory prostheses that restore auditory perception in the deaf or hard-of-hearing. Irony is acoustically characterised by especially a lower fundamental frequency (F0), a lower intensity and a longer duration in comparison to literal utterances. In auditory perception experiments, listeners mainly rely on F0 and intensity values to distinguish between context-free ironic and literal utterances. As CI listeners have great difficulties in F0 perception, the use of frequency information for the detection of irony is impaired. However, irony is often additionally conveyed by characteristic facial expressions.


The aim of the project is two-fold: The first (“Production”) part of the project will study the role of paraverbal cues in verbal irony of Standard Austrian German (SAG) speakers under well-controlled experimental conditions without acoustic context information. The second (“Perception”) part will investigate the performance in recognizing irony in a normal-hearing control group and a group of CI listeners.


Recordings of speakers of SAG will be conducted. During the recording session, the participants will be presented with scenarios that evoke either a literal or an ironic utterance. The response utterances will be audio- and video-recorded. Subsequently, the thus obtained context-free stimuli will be presented in a discrimination test to normal-hearing and to postlingually deafened CI listeners in three modes: auditory only, auditory+visual, visual only.


The results will not only provide information on irony production in SAG and on multimodal irony perception and processing, but will, most importantly, identify the cues that need to be improved in cochlear implants in order to allow CI listeners full participation in daily life.

Projektleitung: Michael Pucher

Beginn des Projekts: 1. Februar 2019


Um den aktuellen Zustand einer Sprache zu erheben, soll bekanntlich der Sprachgebrauch eines alten, ländlichen, nicht mobilen Mannes analysiert werden. Für Entwicklungstendenzen einer Varietät sollte man jedoch die Sprache einer jungen und gebildeten Frau im urbanen Bereich untersuchen. Der Sprachgebrauch von jungen Frauen stellt ein besonders interessantes Forschungsfeld dar: Sie gelten als Initiatoren und Treibkräfte linguistischer Neuheiten einer Sprache, lautlich wie lexikal, die sich von Großstädten aus in den weiteren Sprachraum verbreiten können. Ebenso wird angenommen, dass aufgeschlossene junge Frauen linguistische Innovationen rascher übernehmen als ihre männlichen Peers. Sie verleiben sich eine neue Art zu sprechen schneller ein und geben diese an ihre späteren Kinder weiter. Frauen tendieren auch dazu, sprachliche Merkmale als social identifier zu verwenden, um sich der gleichen Peergroup zugehörig zu zeigen und können dadurch zu einem Sprachwandel beitragen.

Die Stadt Wien hat sich in den vergangenen 30 Jahren stark verändert; so ist die Bevölkerung um 15% gestiegen und mit ihr auch die Anzahl der gesprochenen Sprachen. Laut einer Erhebung der Arbeiterkammer werden in Wien ca. 100 verschiedene Sprachen verwendet und man kann Wien nicht absprechen, weiterhin als ein Schmelztiegel verschiedenster Sprachen und Kulturen in Mitteleuropa zu gelten. Dass sich diese gesellschaftlichen bzw. gesellschaftspolitischen Veränderungen nicht nur im lexikalischen Sprachgebrauch der WienerInnen widerspiegeln, sondern ebenso in ihrer physiologischen Stimme zum Ausdruck kommen, soll hier den Ausgangspunkt der Studie darstellen.

In dieser Untersuchung wird die Stimme als der physiologische und im Vokaltrakt modulierter Schall zur Lautäußerungen des Menschen gesehen. Die Stimme kann abgesehen davon auch als Ort des verkörperlichten Herz der gesprochenen Sprache gelten, die den Körper durch Indexikalität im sozialen Raum verankert. Als Vehikel der persönlichen Identität kann die Stimme nicht nur soziokulturelle, sondern auch gesellschaftspolitische Merkmale (bspw. „Frauen in Führungspositionen haben eine tiefere Stimme“) widerspiegeln. Hier übernimmt die Soziophonetik eine tragende Rolle, denn sie stellt ein wichtiges Instrument dar, das es ermöglicht, den sozialen Raum und seine gesellschaftsrelevanten Diskurse mit dem Individuum zu verknüpfen.

Studien aus dem angloamerikanischen Raum wie legen nahe, dass sich die Stimme der jungen Frau in einem Wandel befindet. Das soziophonetische Stimmphänomen Vocal Fry hat sich inzwischen im angloamerikanischen Raum zum prominenten Sprachmerkmal junger, gebildeter und urbanen Frauen entwickelt.

Basierend auf zwei Korpora soll eine Longitudinalstudie entstehen, die nachskizziert, inwiefern sich die Stimme der jungen Wienerin geändert hat. Soziophonetische Studien zu Frauenstimmen gibt es in Österreich nicht, vor allem in Hinsicht auf die angestrebte Qualität der Studie. Durch ihren longitudinalen Charakter kann sie aufzeigen, in wie weit das gesellschaftliche Geschehen Einfluss auf die Stimme der Frau ausübt.

Darüber hinaus bietet diese Studie eine einmalige Gelegenheit, eine Momentaufnahme der Wienerin und ihrer Stimme zu erhalten und sie in einen historischen Kontext zu setzen.


Informationen zur Teilnahme finden Sie hier!

General Information

Funded by the Vienna Science and Technology Fund (WWTF) within the  "Mathematics and …2016"  Call (MA16-053)

Principal Investigator: Georg Tauböck

Co-Principal Investigator: Peter Balazs

Project Team: Günther Koliander, José Luis Romero  

Duration: 01.07.2017 – 01.07.2021


Signal processing is a key technology that forms the backbone of important developments like MP3, digital television, mobile communications, and wireless networking and is thus of exceptional relevance to economy and society in general. The overall goal of the proposed project is to derive highly efficient signal processing algorithms and to tailor them to dedicated applications in acoustics. We will develop methods that are able to exploit structural properties in infinite-dimensional signal spaces, since typically ad hoc restrictions to finite dimensions do not sufficiently preserve physically available structure. The approach adopted in this project is based on a combination of the powerful mathematical methodologies frame theory (FT), compressive sensing (CS), and information theory (IT). In particular, we aim at extending finite-dimensional CS methods to infinite dimensions, while fully maintaining their structure-exploiting power, even if only a finite number of variables are processed. We will pursue three acoustic applications, which will strongly benefit from the devised signal processing techniques, i.e., audio signal restoration, localization of sound sources, and underwater acoustic communications. The project is set up as an interdisciplinary endeavor in order to leverage the interrelations between mathematical foundations, CS, FT, IT, time-frequency representations, wave propagation, transceiver design, the human auditory system, and performance evaluation.


compressive sensing, frame theory, information theory, signal processing, super resolution, phase retrieval, audio, acoustics




Scientific and Technological Cooperation between Austria and Serbia (SRB 01/2018)

Duration of the project: 01.07.2018 - 30.06.2020


Project partners:

Acoustics Research Institute, ÖAW (Austria)

University of Vienna (Austria)

University of Novi Sad (Republic of Serbia)


Link to the project website:



Wir danken dem FWF für die Förderung des Projekts mit der Nummer I 4299-N32

Schallquellenlokalisierungsverfahren sind weit verbreitet in der Automobil-, Schienenfahrzeug- und Luftfahrtindustrie. Viele verschiedene Methoden stehen für die Analyse von ruhenden Schallquellen zur Verfügung. Geeignete Verfahren für bewegte Schallquellen kämpfen nach wie vor mit den Problemstellungen der Dopplerverschiebung, der vergleichsweise kurzen Messzeiten und Ausbreitungseffekten durch die umgebende Atmosphäre. Das Projekt LION kombiniert die Expertise von vier Arbeitsgruppen aus drei verschiedenen Ländern im Bereich der Schallquellenlokalisierung: Die Beuth Hochschule für Technik Berlin (Beuth), das Fachgebiet Turbomaschinen- und Thermoakustik der TU Berlin (TUB), das Akustische Forschungsinstitut (ARI) der Österreichischen Akademie der Wissenschaften und das Schweizer Forschungslabor für Akustik / Lärmminderung der EMPA. Die genannten Institutionen kooperieren, um die existierenden Methoden zur Analyse von bewegten Schallquellen zu erweitern und zu verbessern. Dabei soll der Dynamikbereich erweitert sowie die räumliche und die Frequenzauflösung erhöht werden. Die neuen Verfahren sollen auf komplexe Probleme wie die Analyse von tonalen Quellen mit starker Richtcharakteristik oder kohärenten, räumlich verteilten Quellen angewandt werden.



Die Partner werden die Methoden gemeinsam entwickeln, validieren und Synergieeffekte heben, die sich durch diese Partnerkonstellation ergeben. Beuth plant, die Methode der äquivalenten Schallquellen im Frequenzbereich auf bewegte Quellen im Halbraum zu erweitern und dabei die Einflüsse des Bodens und der Schallausbreitung in der Atmosphäre zu berücksichtigen. ARI steuern die akustische Holografie, die Hauptkomponentenanalyse und die Methode der unabhängigen Komponenten bei und möchten diese zusammen mit ihrer Expertise für vorbeifahrende Züge nutzen, um numerische Randelementeverfahren inklusive der Transformation vom stehenden in das bewegte Bezugssystem zu verbessern. TUB entwickelt Optimierungsmethoden und modellbasierte Ansätze für die Lokalisierung von bewegten Schallquellen und bringt eine umfangreiche Datenbasis an mit einer großen Anzahl von Mikrofonen erfassten Überflugversuchsdaten ins Projekt ein. EMPA fügt seine Expertise zur Schallausbreitungsmodellierung mit atmosphärischer Turbulenz und Bodeneffekten basierend auf zeitvarianten digitalen Filtern hinzu. Sie werden überdies einen synthetischen Testfall zur Validerung der erweiterten und verbesserten Schalllokalisierungsmethoden aufsetzen. Das Projekt ist für eine Laufzeit von drei Jahren geplant. Das Arbeitsprogramm ist in vier Arbeitspakete organisiert: 1) Entwicklung der Algorithmen und Modelle, 2) die Entwicklung einer virtuellen Testumgebung für die Methoden, 3) die Simulation von Szenarien in der virtuellen Testumgebung und 4) die Anwendung der verbesserten und erweiterten Verfahren auf existierende Mikrofonmessungen von Zügen und Flugzeugen.


Selective hearing refers to the ability of the human auditory system to selectively attend to a desired speaker while ignoring undesired, concurrent speakers. This is often referred to as the cocktail-party problem. In normal hearing, selective hearing is remarkably powerful. However, in so-called electric hearing, i.e., hearing with cochlear implants (CIs), selective hearing is severely degraded, close to not present at all. CIs are commonly used for treatment of severe-to-profound hearing loss or deafness because they provide good speech understanding in quiet. The reasons for the deficits in selective hearing are mainly twofold. First, they arise from structural limitations of current CI electrode designs which severely limit the spectral resolution. Second, they arise from a lack of salient timing cues, most importantly interaural time difference (ITD) and temporal pitch. The second limitation is assumed to be partly “software”-sided and conquerable with perception-driven signal processing. Yet, success achieved so far is at best moderate.

A recently proposed approach to provide precise ITD and temporal-pitch cues in addition to speech understanding is to insert extra pulses with short inter-pulse intervals (so-called SIPI pulses) into periodic high-rate pulse trains. Results gathered so far in our previous project ITD PsyPhy in single-electrode configurations are encouraging in that both ITD and temporal-pitch sensitivity improved when SIPI pulses were inserted at the signals’ temporal-envelope peaks. Building on those results, this project aims to answer the most urgent research questions towards determining whether the SIPI approach improves selective hearing in CI listeners: Does the SIPI benefit translate into multi-electrode configurations? Does the multi-electrode SIPI approach harm speech understanding? Does the multi-electrode SIPI approach improve speech-in-speech understanding?

Psychophysical experiments with CI listeners are planned to examine the research questions. To ensure high temporal precision and stimulus control, clinical CI signal processors will be bypassed by using a laboratory stimulation system directly connecting the CIs with a laboratory computer. The results are expected to shed light on parts of both electric and acoustic hearing that are still not fully understood to date, such as the role and the potential of temporal cues in selective hearing.

References from our Lab:

Duration: May 2020 - April 2022

Funding: DOC Fellowship Program of the Austrian Academy of Sciences (A-25606)

PI: Martin Lindenbeck

Supervisors: Bernhard Laback and Ulrich Ansorge (University of Vienna)

See also:

Stellen Sie sich vor, Sie befinden sich im dichten Straßenverkehr, inmitten von Fußgängern, Radfahrern und Autos, die sich alle in unterschiedliche Richtungen bewegen. In dieser und vielen anderen Situationen ist es überlebenswichtig, genau zu wissen wo und wann Ereignisse in unserer Umgebung stattfinden. Um möglichst schnell und korrekt auf externe Reize zu reagieren, erzeugt unser Gehirn dabei ständig Vorhersagen über zukünftige Ereignisse. Zum Beispiel, wo ein heranfahrendes Auto sich zu dem Zeitpunkt befinden wird, wenn wir die Straße überqueren wollen. Nicht nur für uns Menschen sind diese Vorhersagen zentral. Auch andere Primaten könnten ähnliche Mechanismen verwenden, etwa wenn sie sich durch dichtes Dschungelgebiet bewegen. Inwiefern die Evolution diese Mechanismen bei Menschen im Vergleich zu anderen Spezies geformt hat, ist bis heute unklar.

Des Weiteren sind unsere Sinnesinformationen oft mehrdeutig, sodass unser Gehirn mehrere parallele Interpretationen und Vorhersagen erzeugt und sich letztlich auf eine festlegen muss. Gegenwärtig stammt der Großteil unseres Wissens über diese Wahrnehmungsprozesse aus Studien zum Sehsinn. Vergleichsweise wenig ist darüber für unseren Hörsinn bekannt, welcher aber gleichermaßen zentral für unser Überleben und Sozialverhalten ist.

Das Zukunftskolleg Dynamates möchte diese zentralen Wissenslücken zur Hörwahrnehmung schließen indem es die Vorhersagemechanismen nahe verwandter Spezies in realistischen aber hochkontrollierbaren virtuellen akustischen Umgebungen testen und mit Computermodellen abbilden wird. Zusätzlich wird Dynamates mittels hochauflösender Elektroenzephalographie (EEG) bei Menschen die neuronalen Grundlagen der zugrunde liegenden Prozesse untersuchen. Das Projekt basiert damit auf einer interdisziplinären Zusammenarbeit zwischen Expertinnen und Experten aus dem Bereich der Computermodellierung (Robert Baumgartner), der Neurowissenschaft (Ulrich Pomper), und der Kognitionsbiologie (Michelle Spierings).

Dynamates wird somit den ersten systematischen Vergleich von dynamischen Vorhersage- und Entscheidungsprozessen des Hörsinns zwischen Menschen und nicht-menschlichen Primaten durchführen. Ein besseres Verständnis der neuronalen Grundlagen dieser Prozesse kann Anwendung bei der Behandlung von Personen mit Störungen im Wahrnehmungs- und Entscheidungsverhalten (z.B. bei Autismus oder Schizophrenie) finden. Die erstellten mathematischen Modelle lassen sich in Zukunft auch in anderen Spezies oder bei komplexeren Entscheidungsprozessen (z.B. in sozialen Interaktionen) testen, und können direkte Anwendung in der Entwicklung von künstlicher Intelligenz und virtuellen Realitäten finden.

In folgender Online-Lecture erklärt Robert Baumgartner weitere Hintergründe zu dieser Forschung: ÖAW Science Bites: Gefahr - wie wir sie hören.