Beschreibung

Eisenbahntunnel vermeiden direkte akustische Beeinträchtigungen durch den Bahnverkehr. Schwingungen aus Tunneln breiten sich jedoch im Boden aus und führen zu Störungen durch wahrgenommene niedrigfrequente Vibrationen.

Ziel dieses Projektes ist es, ein mathematisches Modell zu entwickeln und zu implementieren, das eine bewegte schwingende Last berücksichtigt. Außerdem wird der umgebende Boden als anisotropes Material modelliert, das aus beliebig orientierten Schichten besteht.

 

Methoden

Die Ausbreitung der Vibrationen im Tunnelinneren werden mittels einer finiten Elemente Methode (FEM) berechnet, in der auch die "Superstruktur" des Tunnels und der Gleisanlagen berücksichtigt werden können. Schwingungen außerhalb des Tunnels, im Erdreich, werden durch die Randelementemethode (boundary element method (BEM)) modelliert. Für ein detailiertes Model des ganzen Systems müssen beide Ansätze miteinander gekoppelt werden.

Introduction                                                                                                                                                   

Rumble strips are (typically periodic) grooves place at the side of the road. When a vehicle passes over a rumble strip the noise and vibration in the car should alert the driver of the imminent danger of running off the road. Thus, rumble strips have been shown to have a positive effect on traffic safety. Unfortunately, the use of rumble strips in the close vicinity of populated areas is problematic due to the increased noise burden.

Aims

The aim of the project LARS (LärmArme RumpelStreifen or low noise rumble strips) was to find rumble strip designs that cause less noise in the environment without significantly affecting the alerting effect inside the vehicle. For this purpose, a number of conventional designs as well as three alternative concepts were investigated: conical grooves to guide the noise under the car, pseudo-random groove spacing to reduce tonality and thus annoyance, as well as sinusoidal depth profiles which should produce mostly vibration and only little noise and which are already used in practice.

Methods

Two test tracks were established covering a range of different milling patterns in order to measure the effects of rumble strips for a car and a commercial vehicle running over them. Acoustic measurements using microphones and a head-and-torso-simulator were done inside the vehicle as well as in the surroundings of the track. Furthermore, the vibration of the steering wheel and the driver seat were measured. Using the acoustics measurements, synthetic rumble strip noises were produced, in order to get a wider range of possible rumble strip designs than by pure measurements.

Perception tests with 16 listeners were performed where the annoyance of the immissions as well as the urgency and reaction times for the sounds generated in the interior were determined also using the synthetic stimuli.

LARS was funded by the FFG (project 840515) and the ASFINAG. The project was done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technology, and ABF Strassensanierungs GmbH.

Introduction

Railway vehicles passing through tight curves can produce a high pitched noise called curve squeal. Curve squeal is a very salient type of noise located in the high frequency range that can range between a tonal narrow band and a wide band noise. The reason for the tonal noise is lateral creepage on the top of the rail, which excites wheel vibration at frequencies corresponding to their modes. Wide band noise, however, is caused by wheel flanges touching the rail.

Aims

The project PAAB aims at investigating the effect on the perceived annoyance of such noises using in a perception test. Using the resulting perceptual characterization of curve squeal should aid in more adequately considering this type of noise in noise mapping.

Methods

Based on previous conventional large-scale emission measurements as well as new measurements at immission distances using a head-and-torso-simulator representative samples for curve squeal will be derived and used in a perception test. This will also be aided by using synthetic well defined curve squeal noise.

PAAB is funded by the FFG (project 860523) and the Austrian Federal Railways (ÖBB). The project is done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technololgy (project leader), Kirisits Engineering Consultants, and psiacoustic Umweltforschung und Engineering GmbH.

 

 

Computer werden ständig schneller und die schnelle Entwicklung von Audio-Interface and Audio-Transmissions Technologien haben zu einem neuen Zeitalter von Audio-Systemen geführt, die mittels Surround Lautsprechern räumliche Schallerlebnisse reproduzieren können.

Viele dieser Anwendungen benötigen eine genaue, effiziente und robuste Darstellung des Schalls in der Raum-Zeit-Frequenzebene. Das gemeinesame Projekt von ISF und IRCAM verbindet die mathematischen Konzepte, die am ARI verwendet und entwickelt werden mit der profunden Kenntnis in Signalverarbeitung in Echtzeit am IRCAM. Das Projekt versucht grundlegende Fragen in beiden Forschungsfeldern zu beantworten und hat als Ziel die Entwicklung von verbesserten Methoden für die oben erwähnten Anwendungen.

Spezielle Fragen, die in diesem Projekt geklärt werden sollen, sind:

  • Kann mittels Wavelets und Frames eine effiziente Raum-Zeit-Frequenz Darstellung von Wellenfeldern gefunden werden, die robuster als derzeitig existente Methoden sind?
  • Ist es möglich, auf Frames basierenden Methoden an ein (sphärisches) Lautsprecher-, bzw. Mikrophonarray mit vorgegeben Anordnung von Lautsprechen, bzw. Mikrophonen anzupassen (z.B. das 64 Kanal Array am IRCAM)
  • Wie kann das akustische Feld auf einer Kugel mit Frames dargestellt werden, um bessere Raum-Zeit-Frequenz Darstellung des akustischen Felds an bestimmten Teilen der Kugel zu erhalten?
  • Ist es möglich, diese Raum-Zeit-Frequenz Darstellung in mehreren Auflösungen für Raumaufnahmen mittles sphärischen Mehrkanal-Mikrophonarray zu verwenden (z.B. um eine höhere räumliche Auflösung von frühen Raumreflexionen zu erreichen)?

Beschreibung

Computermodelle für Sprachproduktion und Sprachanalyse sind sein den 1960er Jahren von wissenschaftlichen Interesse. Viele Modelle ersetzen den Vokaltrakt durch eine segementierte Röhre, wenn aber Nasale wie /n/ und /m/ oder nasaliesierte Vokale betrachtet werden sollen, sind Ein-Rohr Modelle nicht mehr ausreichend, weil durch die Nase ein zusätzlicher Resonanzkörper an den Vokaltrakt gekoppelt wird. Daher ist es notwendig, ein verzweigtes Rohrmodell zu betrachten, bei denen die Bestimmung der Querschnittsflächen aus einen vorgegebenen Sprachsignal nicht mehr trivial ist, und im Allgemeinen die Lösung eines nicht-linearen Gleichungssystems voraussetzt. 

Das Gleichungssystem ist überbestimmt, und wir führen z.B. mittels probabilistischen Ansätzen (Bayesscher Statistik) zusätzliche Bedingungen ein, z.B. obere und untere Beschränkungen der Flächenfunktionen oder Glattheitsannahmen.

Objective:

The beam forming method focuses an arbitrary receiver coil using time delay and amplitude manipulation, and adds to the temporal signal of the microphones or the short time Fourier transform.

Method:

64 microphones are collected by a microphone array with arbitrary shape. For compatibility with acoustic holography, equal spacing and a grid with 8 x 8 microphones is used.

Application:

Localization of sound sources on high speed trains is a typical application. The method is used to separate locations along the train and especially the height of different sound sources. Typical sound sources on high speed trains are rail-wheel contact sites and aerodynamic areas. The aerodynamic conditions occur at all heights, especially at the pantograph.

Objective:

In the past a FWF project dealing with the basics of Stochastic Transformation Methods was executed at the ARI. Explicitly the Karhunen Loeve Expansion and the Transformation of a polynomial Chaos were applied in the wave number domain. The procedure is based on the assumption of Gaussian distributed variables. This assumption shall be generalized to arbitrary random variables.

Method:

The assumption of a wave number domain limits the model to a horizontally layered half space. This limitation shall be overcome by Wavelets kernels in the transformation instead of Fourier kernels. The aim is the possibility to calculated one sided statistical distributions for the physical parameters and arbitrary boundaries with the new method.

Objective:

Up to now a boundary element method based on the collocation method was combined with the Fast Multipole Method to speed up the numerical calculation.

Method:

This approach was chosen, because the collocation is a fast method to build up the matrix and the Fast Multipole Method (FMM)is a fast method to solve large matrices. For compatibility with the software HAMS the FMM has to be ported to a Galerkin based Boundary Element (BE) approach.

Objective:

One of the biggest problems encountered when building numerical models for layers is the lack of exact deterministic material parameters. Therefore, stochastic models should be use. However, these models have the general drawback of overusing computer resources. This project developed a stochastic model with the ability to use a shear modulus in conjunction with a special iteration scheme allowing efficient implementation.

Method:

With the Karhunen Loeve Expansion (KLE), it is possible to split the stochastic shear modulus, and therefore the whole system, into a deterministic and a stochastic part. These parts can then be transformed into a linear system of equations using finite elements and Chaos Polynomial Decomposition. Combining the KLE and the Fourier Transformation in combination with Plancherel's theorem enables decoupling of the deterministic part into smaller subsystems. An iteration scheme was developed which narrows the application of "costly" routines to only these smaller deterministic subsystems, instead of the whole higher dimensional (up to a dimension of 10,000) system matrix.

Application:

As concerns about vibrations produced by machinery and traffic have increased in past years, models that can predict vibrations in soil became more important. However, since material parameters for soil layers cannot be measured exactly in practice, it is reasonable to use stochastic models.

Objective:

Methods to predict the propagation of vibrations in soil are relatively undeveloped. Reasons for this include the complexity of the wave propagation in soil and the insufficient knowledge of material parameters. During this project a method was developed to simulate the propagation of vibrations that are caused by a load at the base of a tunnel.

Method:

When dealing with the model of a tunnel in a semi-infinite domain like soil, the boundary element method (BEM) seems to be an appropriate tool. Unfortunately it cannot be applied directly to layered orthotropic media, because of the lack of a closed form of the Greens function, which is essential for BEM. But by transforming the whole system into the Fourier domain with respect to space and time, it is possible to numerically construct an approximation for this function on a predefined grid. With this approximation the boundary integral equation, that describes the propagation of waves caused by a vibrating load at the base of a tunnel can be solved.

Application:

Models that can help to predict the propagation of vibrations inside soil layers are of great interest in earthquake sciences or when constructing railway lines and tunnels.