Physical and Computational Acoustics

  • Ziel

    Die Randelemente-Methode (BEM) wird oft zur Simulation von akustischen Abstrahl- und Reflektionsproblemen benutzt. Im Allgemeinen wird eine Formulierung im Frequenzbereich verwendet, wenn jedoch kurze Impulsantworten oder eine Kopplung mit nichtlinearem Strukturverhalten in Interesse sind, ist eine Formulierung im Zeitbereich zielführender.

    Methode:

    Die für die BEM notwendigen Randintegralgleichungen und Fundamentallösungen werden mittels inverser Fourier-Transformation der äquivalenten Formulierungen im Frequenzbereich ermittelt. Diese Gleichungen werden dann mittels Galerkin-Methode im Ortsbereich und Kollokation im Zeitbereich diskretisiert. Die MOT (Marching-On-in-Time) Methode wird verwendet um das durch die Diskretisierung erhaltene lineare Gleichungssystem zu lösen. Die bekannten Stabilitätsprobleme der MOT-Methode werden mittels einer Burton-Miller Formulierung im Ortsbereich und höhere Interpolationsordnung im Zeitbereich behandelt.

    Zusätzlich ist geplant, die Effizienz des Codes mittels eines modifizierten Plane-Wave-Time-Decomposition Algorithmus zur erhöhen.

  • Beschreibung

    Computermodelle für Sprachproduktion und Sprachanalyse sind sein den 1960er Jahren von wissenschaftlichen Interesse. Viele Modelle ersetzen den Vokaltrakt durch eine segementierte Röhre, wenn aber Nasale wie /n/ und /m/ oder nasaliesierte Vokale betrachtet werden sollen, sind Ein-Rohr Modelle nicht mehr ausreichend, weil durch die Nase ein zusätzlicher Resonanzkörper an den Vokaltrakt gekoppelt wird. Daher ist es notwendig, ein verzweigtes Rohrmodell zu betrachten, bei denen die Bestimmung der Querschnittsflächen aus einen vorgegebenen Sprachsignal nicht mehr trivial ist, und im Allgemeinen die Lösung eines nicht-linearen Gleichungssystems voraussetzt. 

    Das Gleichungssystem ist überbestimmt, und wir führen z.B. mittels probabilistischen Ansätzen (Bayesscher Statistik) zusätzliche Bedingungen ein, z.B. obere und untere Beschränkungen der Flächenfunktionen oder Glattheitsannahmen.

  • Beschreibung

    Eisenbahntunnel vermeiden direkte akustische Beeinträchtigungen durch den Bahnverkehr. Schwingungen aus Tunneln breiten sich jedoch im Boden aus und führen zu Störungen durch wahrgenommene niedrigfrequente Vibrationen.

    Ziel dieses Projektes ist es, ein mathematisches Modell zu entwickeln und zu implementieren, das eine bewegte schwingende Last berücksichtigt. Außerdem wird der umgebende Boden als anisotropes Material modelliert, das aus beliebig orientierten Schichten besteht.

     

    Methoden

    Die Ausbreitung der Vibrationen im Tunnelinneren werden mittels einer finiten Elemente Methode (FEM) berechnet, in der auch die "Superstruktur" des Tunnels und der Gleisanlagen berücksichtigt werden können. Schwingungen außerhalb des Tunnels, im Erdreich, werden durch die Randelementemethode (boundary element method (BEM)) modelliert. Für ein detailiertes Model des ganzen Systems müssen beide Ansätze miteinander gekoppelt werden.

  • Computer werden ständig schneller und die schnelle Entwicklung von Audio-Interface and Audio-Transmissions Technologien haben zu einem neuen Zeitalter von Audio-Systemen geführt, die mittels Surround Lautsprechern räumliche Schallerlebnisse reproduzieren können.

    Viele dieser Anwendungen benötigen eine genaue, effiziente und robuste Darstellung des Schalls in der Raum-Zeit-Frequenzebene. Das gemeinesame Projekt von ISF und IRCAM verbindet die mathematischen Konzepte, die am ARI verwendet und entwickelt werden mit der profunden Kenntnis in Signalverarbeitung in Echtzeit am IRCAM. Das Projekt versucht grundlegende Fragen in beiden Forschungsfeldern zu beantworten und hat als Ziel die Entwicklung von verbesserten Methoden für die oben erwähnten Anwendungen.

    Spezielle Fragen, die in diesem Projekt geklärt werden sollen, sind:

    • Kann mittels Wavelets und Frames eine effiziente Raum-Zeit-Frequenz Darstellung von Wellenfeldern gefunden werden, die robuster als derzeitig existente Methoden sind?
    • Ist es möglich, auf Frames basierenden Methoden an ein (sphärisches) Lautsprecher-, bzw. Mikrophonarray mit vorgegeben Anordnung von Lautsprechen, bzw. Mikrophonen anzupassen (z.B. das 64 Kanal Array am IRCAM)
    • Wie kann das akustische Feld auf einer Kugel mit Frames dargestellt werden, um bessere Raum-Zeit-Frequenz Darstellung des akustischen Felds an bestimmten Teilen der Kugel zu erhalten?
    • Ist es möglich, diese Raum-Zeit-Frequenz Darstellung in mehreren Auflösungen für Raumaufnahmen mittles sphärischen Mehrkanal-Mikrophonarray zu verwenden (z.B. um eine höhere räumliche Auflösung von frühen Raumreflexionen zu erreichen)?
  • Objective:

    Acoustic holography is a mathematical tool for the localization of sources in a coherent sound field.

    Method:

    Using the information of the sound pressure in one plane, the whole three-dimensional sound field is reconstructed. The sound field must be coherent and the half-space in which the sources are situated must be known.

    Application:

    Acoustic holography is used to calculate the sound field in planes parallel to the measured plane. Normally, a plane near the hull of the structure is chosen. Concentrations in the plane are assumed to be the noise source.

  • Objective:

    The beam forming method focuses an arbitrary receiver coil using time delay and amplitude manipulation, and adds to the temporal signal of the microphones or the short time Fourier transform.

    Method:

    64 microphones are collected by a microphone array with arbitrary shape. For compatibility with acoustic holography, equal spacing and a grid with 8 x 8 microphones is used.

    Application:

    Localization of sound sources on high speed trains is a typical application. The method is used to separate locations along the train and especially the height of different sound sources. Typical sound sources on high speed trains are rail-wheel contact sites and aerodynamic areas. The aerodynamic conditions occur at all heights, especially at the pantograph.

  • Biotop Beschreibung
    Workflow Biotop

    Einführung

    Die Lokalisierung von Schallquellen spielt eine wichtige Rolle im täglichem Leben. Die Form des menschlichen Kopfs, des Torsos und vor allem des Außenohrs (Pinna) bewirken einen Filtereffekt für einfallenden Schall und spielen daher eine wichtige Rolle bei der Ortung einer Schallquelle. Dieser Filtereffekt kann mittels der s.g. head related transfer functions (HRTFs, kopfbezogene Übertragungsfunktionen) beschrieben werden. Diese Filterfunktionen können mittels numerischer Methoden (zum Beispiel der Randelemente Methode, BEM) berechnet werden. In BIOTOP sollen diese Berechnungen durch Anwendung adaptiver Wavelet und Frame Methoden effizienter gemacht werden.

    Ziel

    Verglichen mit den herkömmlichen BEM Ansatzfunktionen haben Wavelets den Vorteil, besser an gegebene Schallverteilungen angepasst werden zu können. Als Verallgemeinerung von Wavelets sollen Frames dabei helfen, eine noch flexiblere Berechnungsmethode und damit eine noch bessere Anpassung an das gegebene Problem zu entwickeln. BIOTOP verbindet abstrakte mathematische Theorie mit numerischer und angewandter Mathematik. BIOTOP ist ein internationales DACH-Projekt (DFG-FWF-SFG) zwischen der Philipps-Universität Marburg (Stephan Dahlke), der Unicersität Basel (Helmut Harbrecht) und dem Institut für Schallforschung. Die gemeinsame Erfahrung dieser drei Forschungsgruppen soll helfen, neue numerische Strategien und Methoden zu entwickeln. Das Projekt wird vom FWF (Proj. Nummer: I-1018 N25) gefördert.

     

  • Objective:

    In order to numerically calculate individual head-related transfer functions (HRTFs), a boundary element model (BEM) was developed. This model makes it possible to calculate the sound pressure at the head that is caused by different external sound sources with frequencies up to 20,000 Hz.

    Method:

    In engineering, the traditional BEM is widely used for solving problems. However, the computational effort of the BEM grows quadratically with the number of unknowns. This is one reason why the traditional BEM cannot be used for large models, even on highly advanced computers. In order to calculate the sound pressure at the head at high frequencies, very fine meshes need to be used. These meshes result in large systems of equations. Nevertheless, to be able to use the BEM, the equations must be combined with the Fast Multipole Method (FMM). With the FMM, the resulting matrices can be kept smaller, thus allowing the numeric solving of the Helmholtz equation with feasible effort and almost no accuracy loss as compared to the traditional BEM.

    Application:

    The geometry of the head (especially the form of the outer ear or pinna) acts as a kind of filter. This geometry is very important in localizing sound in the vertical direction and distinguishing between sounds coming from the front or the back. The BEM model can be used to numerically calculate these filter functions, which are dependent on the position and the frequency of the sound source.

    Funding:

    FWF (Austrian Science Fund): Project #P18401-B15

    Publications:

    • Kreuzer, W., Majdak, P., Chen, Z. (2009): Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range, in: J. Acoust .Soc. Am. 126, 1280-1290.
    • Kreuzer, W.  and Chen, Z. S. (2008). "A Fast Multipole Boundary Element Method for calculating HRTFs," AES preprint  7020, AES Convention, Vienna.
  • Objective:

    Upon first investigation, the design of new outward-curved noise barriers has an improved noise-shielding effect if absorbing material is applied. Further investigation shall prove this ability. Numeric simulations and measurements are being processed.

    Method:

    Advanced boundary element methods (BEM) in two dimensions will prove the noise-shielding ability of the sound barrier. Different curvy and straight designs are compared to each other with respect to their shielding effect in the spectrum. Measurements at existing walls are processed and compared. Measurements are conducted without a noise barrier. A simulated softening affect of the noise barrier walls is used to simulate the noise signal behind the new barriers.

    Application:

    Calma Tec has patented the designs and will offer new designs in practice.

    List of Deliverables:

    01. Traffic Noise Recording Plan. 02. Sound Data Storage, Retrieval and Spectrographic Description. 03. Descriptive Noise Statistics. 04. Pricipal Component Analysis. 05. Sound Barrier Mesh Models. 06. Simulation, Transfer Functions & Clustering. 07. Visualization. 08. Psychoacoustic Irrelevance. 09 Modulation Effects. 10. Subjective Preference Tests. 11. Conclusions

  • Objective:

    In certain measurement setups, such as the measurement of gear mechanism behavior undergoing load reversal, the fine structure of the rotation speed function within a single rotation is interesting. In these situations, measurement errors caused by irregular cog intervals or by other failures of cogwheels are disturbing and must be corrected.

    Method:

    From a reference signal, the distribution parameter of the rotation angle for each cog of the cogwheel is assigned as a cogwheel model. This cogwheel model can minimize the measurement failures caused by the cogwheel if its cog is implemented in synch with the measurement signal. If the reference signal and the measurement signal come from different measurements, the synchronicity has to be established first. The calculation of the shift between the two signals is determined by the cog index, which has the maximum correlation of the rotation angle allocation between the reference signal and the measurement signal.

    Application:

    The developed method will be used as a module in the acoustic measurement and analysis system PAK.

  • Objective:

    This project aims to develop an independent modulus for the wavelet analysis that contains a simple program interface and can be used flexibly.

    Method:

    The implementation was in C++ in the form of a wavelet analysis class and a signal queue. Features:

    • The Input/Output data format can be chosen at run time. The Input and the Output are separately configurable.
    • There are several possibilities for choosing the array and distribution of the frequency bin. The frequency bin vector can also be transferred.
    • Seven wavelets are implemented.
    • A down-sampling method can be used for the acceleration (factor: 1.2 convert frequency bins are chosen automatically).
    • Because of the disjunction in signal queue and analysis, an asynchrony Input/Output is possible.
    • Compiling an optimized numerical library can be achieved. Currently, the application of the "Intel® Signal Processing Library" (SPL) or of the "Intel® Integrated Performance Primitives" (IPP) is possible.
    • The signal queue class can be used independently of the analysis class. It also implements the down-sampling function.

    Application:

    The developed classes are used as a modulus in the acoustic measurement and analysis system PAK. The analysis class was also integrated as a signal processing atom WLLIB in STx.

  • Objective:

    The usual transformation in acoustics is the Fourier-Transformation. A fast and simple implementation is the windowed Fast Fourier Transformation. A disadvantage of the FFT is that all frequencies are equally spaced in the time frequency plane. A logarithmic spacing that allows keeps the relative resolution in the frequency plane constant is the Wavelet Transformation. This gives the possibility of a higher temporal resolution in the high frequency plane. Several types are implemented in STX and PAK.

    Method:

    A higher temporal resolution is possible, if quadratic transformations defined in the Cohen Class are used. The Windowed Pseudo Wigner Ville Distribution and a discrete version of the Choi-Williams Distribution are implemented in STX and PAK. Disadvantages of these transformations are the cross products that are reduced by smoothing in the different transformations of the Cohen class.

    Application:

    A handbook is written for or the practical use of the difficult transformations. The Handbook documents the possibilities and the limits of the transformations

  • Objective:

    In the boundary element method for infinite exterior spaces occur spurious modes that belong to the interior problem. The resonances are caused by a singularity of the matrix. As compensation additional equations are used that belong to chief points in the interior space.

    Method:

    A new method that does not depend on the appropriate selection of chief points is the Burton Miller Method. It assures good results but increases the numerical calculation and gives unsymmetrical matrices. In combination with the Fast Multipole Method (FMM) a fast calculation of non symmetric matrices is possible.

  • Objective:

    Up to now a boundary element method based on the collocation method was combined with the Fast Multipole Method to speed up the numerical calculation.

    Method:

    This approach was chosen, because the collocation is a fast method to build up the matrix and the Fast Multipole Method (FMM)is a fast method to solve large matrices. For compatibility with the software HAMS the FMM has to be ported to a Galerkin based Boundary Element (BE) approach.

  • Introduction                                                                                                                                                   

    Rumble strips are (typically periodic) grooves place at the side of the road. When a vehicle passes over a rumble strip the noise and vibration in the car should alert the driver of the imminent danger of running off the road. Thus, rumble strips have been shown to have a positive effect on traffic safety. Unfortunately, the use of rumble strips in the close vicinity of populated areas is problematic due to the increased noise burden.

    Aims

    The aim of the project LARS (LärmArme RumpelStreifen or low noise rumble strips) was to find rumble strip designs that cause less noise in the environment without significantly affecting the alerting effect inside the vehicle. For this purpose, a number of conventional designs as well as three alternative concepts were investigated: conical grooves to guide the noise under the car, pseudo-random groove spacing to reduce tonality and thus annoyance, as well as sinusoidal depth profiles which should produce mostly vibration and only little noise and which are already used in practice.

    Methods

    Two test tracks were established covering a range of different milling patterns in order to measure the effects of rumble strips for a car and a commercial vehicle running over them. Acoustic measurements using microphones and a head-and-torso-simulator were done inside the vehicle as well as in the surroundings of the track. Furthermore, the vibration of the steering wheel and the driver seat were measured. Using the acoustics measurements, synthetic rumble strip noises were produced, in order to get a wider range of possible rumble strip designs than by pure measurements.

    Perception tests with 16 listeners were performed where the annoyance of the immissions as well as the urgency and reaction times for the sounds generated in the interior were determined also using the synthetic stimuli.

    LARS was funded by the FFG (project 840515) and the ASFINAG. The project was done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technology, and ABF Strassensanierungs GmbH.

  • Objective:

    The Acoustic Research Institute was mandated to do measurements with the acoustic 64-channel microphone array using the beam forming method to derive a source model for high speed trains according to the new guideline CNOSSOS-EU.

    Method:

    The beam forming method was used, because the train is a fast moving vehicle and therefore a transient acoustic source. Five heights were used in the evaluation based on the CNOSSOS-EU and additionally five heights were evaluated that fit to the geometry of the trains.

    Application:

    Speeds from 200 km/h up to 330 km/h were tested for the ICEs and from 200 km/h up to 250 km/h for the Railjet. At the same speed both trains had the same acoustic level.

  • Objective:

    In Cooperation with National Instruments an implementation of MPEG4 features in the software package DIADEM is planned.

    Method:

    The application of MPEG4 features to noise is proven. Now the implementation of MPEG4 features into DIADEM is planned. In preparation of the project additional features were implemented into STX. The implementation into DIADEM is projected in the future.

    Application:

    DIADEM is a database that allows for a rapid search of measurement recordings. New search indexes can be generated based on the MPEG4 features of the recordings.

  • Objective:

    The Multilevel Fast Multipole Method, when used in combination with the Boundary Element Method (BEM), is a tool to significantly speed up the simulation of large objects almost without loss in accuracy.

    Method:

    The Fast Multipole Method subdivides the Boundary Element mesh into different clusters. If two clusters are sufficiently far away from each other (i.e. they are in each other's far field), all calculations that would have to be made for every pair of nodes can be reduced to the midpoints of the clusters with almost no loss of accuracy. For clusters not in the far field, the traditional BEM has to be applied. The Multilevel Fast Multipole Method introduces different levels of clustering (clusters made out of smaller clusters) to additionally enhance computation speed.

    Application:

    The MLFFM is used for the simulation of head related transfer functions. The diagram above compares the result of a classical BEM with the MLFMM.

  • Objective:

    An important difficulty of ray-tracing and boundary element method is the fine grid, which is needed in the high frequency region.

    Method:

    By means of new alternating shape functions e.g. wavelets at the boundary it could be possible to define a grid on the boundary that is independent from the wave number.

  • Objective:

    Methods to predict the propagation of vibrations in soil are relatively undeveloped. Reasons for this include the complexity of the wave propagation in soil and the insufficient knowledge of material parameters. During this project a method was developed to simulate the propagation of vibrations that are caused by a load at the base of a tunnel.

    Method:

    When dealing with the model of a tunnel in a semi-infinite domain like soil, the boundary element method (BEM) seems to be an appropriate tool. Unfortunately it cannot be applied directly to layered orthotropic media, because of the lack of a closed form of the Greens function, which is essential for BEM. But by transforming the whole system into the Fourier domain with respect to space and time, it is possible to numerically construct an approximation for this function on a predefined grid. With this approximation the boundary integral equation, that describes the propagation of waves caused by a vibrating load at the base of a tunnel can be solved.

    Application:

    Models that can help to predict the propagation of vibrations inside soil layers are of great interest in earthquake sciences or when constructing railway lines and tunnels.