• The FWF project "Time-Frequency Implementation of HRTFs" has started.

    Principal Investigator: Damian Marelli

    Co-Applicants: Peter BalazsPiotr Majdak

  • Proposal for a Master studentship (f/m)


    Title: Measurements of auditory time-frequency masking kernels for various masker frequencies and levels.


    Duration: 6 months, working time = 20 hours/week.


    Starting date: ASAP.


    Closing date for applications: until the position is filled.



    Background:Over the last decades, many psychoacoustical studies investigated auditory masking, an important property of auditory perception. Masking refers to the degradation of the detection of a sound (referred to as the “target”) in presence of another sound (the “masker”). In the literature, masking has been extensively investigated with simultaneous (spectral masking) and non-simultaneous (temporal masking) presentation of masker and target. The results were used to develop models of either spectral or temporal masking. Attempts were made to simply combine these models to account for time-frequency masking in perceptual audio codecs like mp3. However, a recent study on time-frequency masking conducted at our lab [1] revealed the inaccuracy of such simple models. The development of an efficient model of time-frequency masking for short-duration and narrow-band signals still remains a challenge. For instance, such a model is crucial for the prediction of masking in time-frequency representations of sounds and is expected to improve current perceptual audio codecs.


    In the previous study [1], the time-frequency masking kernel for a 10-ms Gaussian-shaped sinusoid was measured at a frequency of 4 kHz and a sensation level of 60 dB. A Gaussian envelope is used because it allows for maximum compactness in the time-frequency domain. While these data constitute a crucial basis for the development of an efficient model of time-frequency masking, additional psychoacoustical data are required, particularly the time-frequency masking kernels for different Gaussian masker frequencies and sensation levels.


    The proposed work is part of the ongoing research project POTION: “Perceptual Optimization of audio representaTIONs and coding”, jointly funded by the Austrian Science Fund (FWF) and the French National Research Agency (ANR).


    Aims:The first goal of the work is to conduct psychoacoustical experiments to measure the time-frequency masking kernels for three masker sensation levels (20, 40, and 60 dB) and three masker frequencies (0.75, 4.0, and 8.0 kHz) following the methods in [1]. This part will consist in experimental design, programming, and data collection. The second goal of the work is to interpret the data and compare them to literature data for maskers with various spectro-temporal shapes. This step shall involve the use of state-of-the-art models of the auditory periphery to predict the data.


    Applications:The data will be used to develop a new model of time-frequency masking that should later be implemented and tested in a perceptual audio codec.


    Required skills: Qualification for a Master thesis, knowledge in psychophysical methods andpsychoacoustics, experience with auditory models would be a plus, Matlab programming, good communication, proper spoken/written English.


    Gross salary: 948.80€/month.


    Supervisors: Thibaud Necciari and Bernhard Laback
    Emails: Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein! / Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!
    Tel: +43 1 51581-2538



    [1] T. Necciari. Auditory time-frequency masking: Psychoacoustical measures and application to the analysis-synthesis of sound signals. PhD thesis, Aix-Marseille I University, France, October 2010. Available online.

  • AABBA is an intellectual grouping collaborating on the applications and development of models of human binaural hearing

    AABBA's goal is to promote exploration and development of binaural models and their applications. AABBA members are academic scientists willing to participate in our activities. We  meet annually for an open discussion and progress presentation, especially encouraging to bring in students and young scientists associated with members’ projects to our meetings. Our activities consolidate in joint publications and special sessions at international conferences. As a relevant tangible outcome, we provide validated (source) codes for published models of binaural and spatial hearing to our collection of auditory models, known as the auditory modeling toolbox (AMT).


    • Executive board: Piotr Majdak, Armin Kohlrausch, Ville Pulkki

    • Members:

      • Aachen: Janina Fels, ITA, RWTH Aachen
      • Berlin: Klaus Obermayer, NI, TU Berlin
      • Bochum: Dorothea Kolossa & Jens Blauert, Ruhr-Universität Bochum
      • Cardiff: John Culling, School of Psychology, Cardiff University
      • Copenhagen: Torsten Dau & Tobias May, DTU, Lyngby
      • Dresden: Ercan Altinsoy, TU Dresden
      • Ghent: Sarah Verhulst, Ghent University
      • Guangzhou: Bosun Xie, South China University of Technology, Guangzhou
      • Helsinki: Ville Pulkki & Nelli Salminen, Aalto University
      • Ilmenau: Alexander Raake, TU Ilmenau
      • Kosice: Norbert Kopčo, Safarik University, Košice
      • Lyon: Mathieu Lavandier, Université de Lyon
      • Munich I: Werner Hemmert, TUM München
      • Munich II: Bernhard Seeber, TUM München 
      • Oldenburg: Bernd Meyer, Carl von Ossietzky Universität Oldenburg
      • Oldenburg-Eindhoven: Steven van de Par & Armin Kohlrausch, Universität Oldenburg
      • Patras: John Mourjopoulos, University of Patras
      • Rostock: Sascha Spors, Universität Rostock
      • Sheffield: Guy Brown, The University of Sheffield
      • Tabriz: Masoud Geravanchizadeh, University of Tabriz
      • Toulouse: Patrick Danès, Université de Toulouse
      • Troy: Jonas Braasch, Rensselaer Polytechnic Institute, Troy
      • Vienna: Bernhard Laback & Robert Baumgartner, Austrian Academy of Sciences, Wien
      • The AMT (Umbrella Project): Piotr Majdak
    AABBA Group 2018
    AABBA Group as of the 10th meeting 2018 in Vienna.


    Annual meetings are held at the beginning of each year:

    • 11th meeting: 19-20 February 2019, Vienna. Schedule.
    • 10th meeting: 30-31 January 2018, Vienna. Schedule.
    • 9th meeting: 27-28 February 2017, Vienna. Schedule.
    • 8th meeting: 21-22 January 2016, Vienna. Schedule.
    • 7th meeting: 22-23 February 2015, Berlin.
    • 6th meeting: 17-18 February 2014, Berlin.
    • 5th meeting: 24-25 January 2013, Berlin.
    • 4th meeting: 19-20 January 2012, Berlin.
    • 3rd meeting: 13-14 January 2011, Berlin.
    • 2nd meeting: 29-30 September 2009, Bochum.
    • 1st meeting: 23-26 March 2009, Rotterdam.


    • Special Session "Binaural models: development and applications" at the ICA 2019, Aachen.
    • Special Session "Models and reproducible research" at the Acoustics'17 (EAA/ASA) 2017, Boston.
    • Structured Session "Applied Binaural Signal Processing" at the Forum Acusticum 2014, Krakòw.
    • Structured Session "The Technology of Binaural Listening & Understanding" at the ICA 2016, Buenos Aires.

    Contact person: Piotr Majdak

  • Objective:

    The Acoustic Measurement Tool at the Acoustics Research Institute (AMTatARI) has been developed for the automatic measurement of system properties of electro-acoustic systems like loudspeakers and microphones. As a special function, this tool allows an automatic measurement of Head Related Transfer Functions (HRTF). 

    Measurement of the following features has been implemented so far:

    • total harmonic distortion (THD)
    • signal in noise and distortions (SINAD)
    • impulse response

    The impulse responses can be measured with the Maximum Length Sequences (MLS) or with exponential sweeps. Whereas, in case of the sweeps, the new multiple exponential sweep method (MESM) is available. This method is also used to measure HRTFs with AMTatARI.

  • BiPhase:  Binaural Hearing and the Cochlear Phase Response

    Project Description

    While it is often assumed that our auditory system is phase-deaf, there is a body of literature showing that listeners are very sensitive to phase differences between spectral components of a sound. Particularly, for spectral components falling into the same perceptual filter, the so-called auditory filter, a change in relative phase across components causes a change in the temporal pattern at the output of the filter. The phase response of the auditory filter is thus important for any auditory tasks that rely on within-channel temporal envelope information, most notably temporal pitch or interaural time differences.

    Within-channel phase sensitivity has been used to derive a psychophysical measure of the phase response of auditory filters (Kohlrausch and Sanders, 1995). The basic idea of the widely used masking paradigm is that a harmonic complex whose phase curvature roughly mirrors the phase response of the auditory filter spectrally centered on the complex causes a maximally modulated (peaked) internal representation and, thus, elicits minimal masking of a pure tone target at the same center frequency. Therefore, systematic variation of the phase curvature of the harmonic complex (the masker) allows to estimate the auditory filter’s phase response: the masker phase curvature causing minimal masking reflects the mirrored phase response of the auditory filter.

    Besides the obvious importance of detecting the target in the temporal dips of the masker, particularly of the target is short compared to the modulation period of the masker (Kohlrausch and Sanders, 1995), there are several indications that fast compression in the cochlea is important to obtain the masker-phase effect (e.g., Carlyon and Datta, 1997; Oxenham and Dau, 2004). One indication is that listeners with sensorineural hearing impairment (HI), characterized by reduced or absent cochlear compression due to loss of outer hair cells, show only a very weak masker-phase effect, making it difficult to estimate the cochlear phase response.

    In the BiPhase project we propose a new paradigm for measuring the cochlear phase response that does not rely on cochlear compression and thus should be applicable in HI listeners. It relies on the idea that the amount of modulation (peakedness) in the internal representation of a harmonic complex, as given by its phase curvature, determines the listener’s sensitivity to envelope interaural time difference (ITD) imposed on the stimulus. Assuming that listener’s sensitivity to envelope ITD does not rely on compression, systematic variation of the stimulus phase curvature should allow to estimate the cochlear phase response both in normal-hearing (NH) and HI listeners. The main goals of BiPhase are the following:

    • Aim 1: Assessment of the importance of cochlear compression for the masker-phase effect at different masker levels. Masking experiments are performed with NH listeners using Schroeder-phase harmonic complexes with and without a precursor stimulus, intended to reduce cochlear compression by activation of the efferent system controlling outer-hair cell activity. In addition, a quantitative model approach is used to estimate the contribution of compression from outer hair cell activity and other factors to the masker-phase effect. The results are described in Tabuchi, Laback, Necciari, and Majdak (2016). A follow-up study on the dependency of the masker-phase effect on masker and target duration, the target’s position within the masker, the masker level, and the masker bandwidth and conclusions on the role of compression of underlying mechanisms in simultaneous and forward masking is underway.
    • Aim 2: Development and evaluation of an envelope ITD-based paradigm to estimate the cochlear phase response. The experimental results on NH listeners, complemented with a modeling approach and predictions, are described in Tabuchi and Laback (2017). This paper also provides model predictions for HI listeners.
      Besides the consistency of the overall pattern of ITD thresholds across phase curvatures with data on the masking paradigm and predictions of the envelope ITD model, an unexpected peak in the ITD thresholds was found for a negative phase curvature which was not predicted by the ITD model and is not found in masking data. Furthermore, the pattern of results for individual listeners appeared to reveal more variability than the masking paradigm. Data were also collected with an alternative method, relying on the extent of laterality of a target with supra-threshold ITD, as measured with an interaural-level-difference-based pointing stimulus. These data showed no nonmonotonic behavior at negative phase curvatures. Rather, they showed good correspondence with the ITD model prediction and more consistent results across individuals compared to the ITD threshold-based method (Zenke, Laback, and Tabuchi, 2016).
    • Aim 3: Development of a ITD-based method to account for potentially non-uniform curvatures of the phase response in HI listeners. Using two independent iterative approaches, NH listeners adjusted the phase of individual harmonics of an ITD-carrying complex so that it elicited maximum extent of laterality. Although the pattern of adjusted phases very roughly resembled the expected pattern, there was a large amount of uncertainty (Zenke, 2014), preventing the method from further use. Modified versions of the method will be considered in a future study.


    This project is funded by the Austrian Science Fund (FWF, Project # P24183-N24, awarded to Bernhard Laback). It run from 2013 to 2017


    Peer-reviewed papers

    • Tabuchi, H. and Laback, B. (2017): Psychophysical and modeling approaches towards determining the cochlear phase response based on interaural time differences, The Journal of the Acoustical Society of America 141, 4314–4331.
    • Tabuchi, H., Laback, B., Necciari, T., and Majdak, P (2016). The role of compression in the simultaneous masker phase effect, The Journal of the Acoustical Society of America 140, 2680-2694.

    Conference talks

    • Tabuchi, H., Laback, B., Majdak, P., and Necciari, T. (2014). The role of precursor in tone detection with Schroeder-phase complex maskers. Poster presented at 37th Association for Research in Otolaryngology (ARO) Meeting, San Diego, California.
    • Tabuchi, H., Laback, B., Majdak, P., and Necciari, T. (2014). The perceptual consequences of a precursor on tone detection with Schroeder-phase harmonic maskers. Invited talk at Alps Adria Acoustics Association, Graz, Austria.
    • Tabuchi, H., Laback, B., Majdak, P., Necciari, T., and Zenke,K. (2015). Measuring the auditory phase response based on interaural time differences. Talk at 169th Meeting of the Acoustical Society of America, Pittsburgh, Pennsylvania.
    • Zenke, K., Laback, B., and Tabuchi, H. (2016). Towards an Efficient Method to Derive the Phase Response in Hearing-Impaired Listeners. Talk at 37th Association for Research in Otolaryngology (ARO) Meeting, San Diego, California.
    • Tabuchi, H., Laback, B., Majdak, P., Necciari, T., and Zenke, K. (2016). Modeling the cochlear phase response estimated in a binaural task. Talk at 39th Association for Research in Otolaryngology (ARO) Meeting, San Diego, California.
    • Laback, B., and Tabuchi, H. (2017). Psychophysical and modeling approaches towards determining the cochlear phase response based on interaural time differences. Invited Talk at AABBA Meeting, Vienna, Austria.
    • Laback, B., and Tabuchi, H. (2017). Psychophysical and Modeling Approaches towards determining the Cochlear Phase Response based on Interaural Time Differences. Invited Talk at 3rd Workshop “Cognitive neuroscience of auditory and cross-modal perception, Kosice, Slovakia.


    • Carlyon, R. P., and Datta, A. J. (1997). "Excitation produced by Schroeder-phase complexes: evidence for fast-acting compression in the auditory system," J Acoust Soc Am 101, 3636-3647.
    • Kohlrausch, A., and Sander, A. (1995). "Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets," J Acoust Soc Am 97, 1817-1829.
    • Oxenham, A. J., and Dau, T. (2004). "Masker phase effects in normal-hearing and hearing-impaired listeners: evidence for peripheral compression at low signal frequencies," J Acoust Soc Am 116, 2248-2257.

    See also


  • Objective:

    The dependency of perceived loudness from electrical current in Cochlear Implant (CI) stimulation has been investigated in several existing studies. This investigation has two main goals:

    1. To study the efficiency of an adaptive method to determine the loudness function.
    2. To measure the loudness function in binaural as well as monaural stimulation.


    Loudness functions are measured at single electrodes (or interaural electrode pairs) using the method of categorical loudness scaling. The efficiency of this method for hearing impaired listeners has been demonstrated in previous studies (Brand and Hohmann, JASA 112, p.1597-1604). Both an adaptive method and the method of constant stimuli are used. Binaural functions are measured subsequently to monaural function, including monaural measurements as control conditions.


    The results indicate the suitability and efficiency of the adaptive categorical loudness scaling method as a tool for the fast determination of the loudness function. This can be applied to the clinical fitting of implant processors as well as for pre-measurements in psychoaoustic CI studies. The measurement results also provide new insights into monaural and binaural loudness perception of CI listeners.




    • Wippel, F., Majdak, P., and Laback, B. (2007). Monaural and binaural categorical loudness scaling in electric hearing, presented at Conference on Implantable Auditory Prostheses (CIAP), Lake Tahoe.
    • Wippel, F. (2007). Monaural and binaural loudness scaling with cochlea implant listeners, master thesis, Technical University Vienna, Autrian Academy of Sciences (in German)
  • Objective:

    A recently developed stimulation strategy for cochlear implants attempts to encode temporal fine structure information, which is known to be important in perceiving pitch and interaural time differences (ITD). So-called "sequences" of pulses are triggered with each zero-crossing of the acoustic input waveform. It is expected that adaptation effects at the auditory nerve level limit the information flow. The goal of this project is to find optimum parameter values for this new stimulation strategy, which is intended to be applied in clinical applications.


    The effects of a parameter's pulse rate within each sequence, the number of sequences per second, and the temporal shape of the sequence on ITD perception are studied systematically.


    The optimum parameter values determined in the experiments are intended to be used in the clinical application of the new stimulation strategy.

  • Objective:

    This study explores the adaptation of localization mechanisms to warping of spectral localization features, as required for CI listeners to map those features to their reduced electric stimulation range.

    Methods and Results:

    The effect of warping the stimulation range from 2.8 to 16 kHz to the range from 2.8 to 8.5 kHz was studied in normal-hearing listeners. Fifteen subjects participated in a long-time localization-training study, involving two-hour daily audio-visual training over a period of three weeks. The Test Group listened to frequency-warped stimuli, the Control Group to low-pass filtered stimuli (8.5 kHz). The Control Group showed an initial increase of localization error and essentially reached the baseline performance at the end of the training period. The Test Group showed a strong initial increase of localization error, followed by a steady improvement of performance, even though not reaching the baseline performance at the end of the training period. These results are promising with respect to the idea to present high-frequency spectral localization cues to the stimulation range available with CIs


    FWF (Austrian Science Fund): Project #P18401-B15


    • Walder, T. (2010) Schallquellenlokalisation mittels Frequenzbereich-Kompression der Außenohrübertragungsfunktionen (englisch: Sound source localization with frequency-range compressed head-related transfer functions), Master thesis, Technical University of Graz & Kunstuniversität Graz.
    • Majdak, P., Walder, T., and Laback, B. (2011). Learning to Localize Band-Limited Sounds in Vertical Planes, presented at: 34st MidWinter Meeting of the Association for Research in Otolaryngology (ARO). Baltimore, Maryland.
  • Objective:

    Previous studies show that cochlear implant (CI) listeners show sensitivity to interaural time difference (ITD) in the fine structure at comparable, or sometimes even higher pulse rates than normal hearing (NH) subjects. This study investigates whether the differences between the two subject groups are due to an effect of auditory filtering that is absent in the case of electric stimulation.


    The effects of center frequency and pulse rate on the sensitivity to ongoing envelope ITD were investigated using bandpass-filtered pulse trains. Three center frequencies (4.6, 6.5, and 9.2 kHz) were tested, and the bandwidth was scaled to stimulate an approximately constant range on the basilar membrane. The pulse rate was varied from 200 to 588 pulses per second (pps).


    The results show a small but significant decrease in performance with an increase in center frequency. Furthermore, performance decreases with an increase in pulse rate, yielding a rate limit of approximately 500 pps. The lack of an interaction between pulse rate and center frequency indicates that auditory filtering was not the limiting factor in ITD perception. This suggests the existence of other limiting mechanisms, such as phase locking or more central binaural processes. The comparison of the ITD rate limits in CI subjects with those in NH subjects was considered unaffected by the auditory filtering in NH listeners. 


    FWF (Austrian Science Fund): Project # P18401-B15


    • Laback, B. and Majdak, P. (2007). Effect of Center Frequency on the Sensitivity to Interaural Time Differences in Filtered Pulse Trains, proceedings of DAGA 2007, Stuttgart.
    • Majdak, P., and Laback, B. (2008). Effect of center frequency and rate on the sensitivity to interaural delay in high-frequency click trains, J. Acoust. Soc. Am. (under review).


  • Objective:

    This project investigates the effect on cochlear implant (CI) speech understanding caused by spectral peaks and notches, such as those resulting from the head-related transfer function filtering of a sound source. This is required to determine how spectral localization cues are best encoded with CIs, without destroying speech information.


    Results from this project are required for the development of a 3-D localization strategy for CIs. Furthermore, the results give insight into the robustness of speech cues against spectral disruption in electric hearing.


    FWF (Austrian Science Fund): Project #P18401-B15

  • Objective:

    Bilateral cochlear implant (CI) listeners currently use stimulation strategies that encode

    interaural time differences (ITD) in the temporal envelope. However, the strategies do not transmit ITD in the fine structure, because of the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects who listened to a simulation of electric stimulation.

    Methods und Results:

    Lateralization discrimination was tested at different pulse rates for various combinations of

    independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong inter-individual differences: the better performing CI listeners performed comparably to the NH listeners.


    The result that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates is relevant to future CI stimulation strategies that encode fine timing cues. It is expected that appropriate encoding of these cues improves sound localization abilities and speech understanding in noise.




    Majdak, P., Laback, B., Baumgartner., W.D. (2006). Effects of interaural time differences in fine structure and envelope on lateral discrimination in electrical hearing, J. Acoust. Soc. Am. 120, 2190-201.

  • Objective and Methods:

    This study examined the sensitivity of four cochlear implant (CI) listeners to ITD in different portions of four-pulse sequences in lateralization discrimination. ITD was present either in all the pulses (referred to as condition "Wave"), the two middle pulses (Ongoing), the first pulse (Onset), the last pulse (Offset), or both the first and last pulse (Gating). All ITD conditions were tested at different pulse rates (100, 200, 400, and 800 pulses per second, pps). Also, five normal hearing (NH) subjects were tested. The NH subjects listened to an acoustic simulation of CI stimulation.


    All CI and NH listeners were sensitive in condition "Gating" at all pulse rates for which they showed sensitivity in condition "Wave". The sensitivity in condition "Onset" increased with the pulse rate for three CI listeners as well as for all NH listeners. The performance in condition "Ongoing" varied among the subjects. One CI listener showed sensitivity up to 800 pps, two up to 400 pps, and one at 100 pps only. The group of NH listeners showed sensitivity up to 200 pps.


    CI listeners' ability to detect ITD from the middle pulses of short trains indicates fine timing relevance of stimulation pulses to lateralization. This is also relevant to CI stimulation strategies.




    • Laback, B., Majdak, P., Baumgartner, W. D. (2007). Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing, J. Acoust. Soc. Am. 121, 2182-2191.
    • Laback, B., Majdak, P., Baumgartner., W.D. (2005). Interaural time differences in temporal fine structure, onset, and offset in bilateral electrical hearing, presented at the 28th Meeting of the Association for Research in Otolaryngology, New Orleans. 
    • Laback, B., Majdak, P., Baumgartner, W. D. (2006). Interaural Time Differences in Ongoing and Gating Signal Portions in Acoustic and Electric Hearing: Model Results, Proceedings of DAGA 2006, Braunschweig. 
    • Laback, B., Majdak, P., Baumgartner, W. D. (2005). Fine structure and gating interaural time differences in electrical and acoustical hearing: effects of stimulus duration, presented at the Conference on Implantable Auditory Prostheses (CIAP), Asilomar.
    • Laback, B., Majdak, P., Baumgartner., W.D. (2004). Sensitivity to interaural time differences in temporal fine-structure, onset, and offset in bilateral electrical hearing, presented at 5th Wullstein Symposium on Bilateral Cochlear Implants and Binaural Signal Processing, Würzburg.
  • Objective:

    This project studies the effects of the upper-frequency boundary and of spectral warping on speech intelligibility among Cochlear Implant (CI) listeners, using a 12-channel implant, and normal hearing (NH) listeners.  This is important to determine how many basal channels are "free" for encoding spectral localization cues.


    The results show that eight frequency channels and spectral content up to about 3 kHz are sufficient to transmit speech under unwarped conditions. If frequency warping was applied, the changes had to be limited ± 2 frequency channels to preserve good speech understanding. This outcome shows the range of allowed modifications for presenting spectral localization cues to CI listeners. About four channels were found to be "free" for encoding spectral localization cues


    see the description of the CI-HRTF project


    FWF (Austrian Science Fund): Project #P18401-B15


    • Goupell, M., Laback, B., Majdak, P., and Baumgartner, W. D. (2007). Effects of upper-frequency boundary and spectral warping on speech intelligibility in electrical stimulation, J. Acoust. Soc. Am. 123, 2295-2309.
    • Goupell, M. J., Laback, B., Majdak, P., and Baumgartner, W-D. (2007). Effect of frequency-place mapping on speech intelligibility: implications for a cochlear implant localization strategy, presented at Conference on Implantable Auditory Prostheses (CIAP), Lake Tahoe.
    • Goupell, M. J., Laback, B., Majdak, P., and Baumgartner, W-D. (2007). Effect of different frequency mappings on speech intelligibility for CI listeners, proceedings of DAGA 2007, Stuttgart.
  • Objective:

    ExpSuite is a program that compiles the implementation of psychoacoustic experiments. ExpSuite is the name of a framework that is used as a basis for an application. It can be enlarged with customized and experiment-dependent methods (applications). The framework consists of a user-interface (experimentator-and-subject interface), signal processing modules (off-line and in real-time), and input-output modules.

    The user-interface is implemented in Visual Basic.NET and benefits from the "Rapid Application Development" environment, which develops experiments quickly. To compensate for the sometimes slow processing performance of VB, the stimulation signals can be processed in a vector-oriented way using a direct link to MATLAB. Because of the direct link to MATLAB, numerous MATLAB intern functions are available to the ExpSuite applications.

    The interface accessible to the people administering the tests contains several templates that can be chosen for a specific experiment. Either the keyboard, mouse, joypad, or joystick can be chosen as the input device. The user interface is designed for dual screen equipment, and allows a permanent surveillance of the experiment status on the same computer. Additionally, the transmission of the current experiment status to another computer is possible via a network connection.The framework supports two types of stimulation:

    • the standard acoustic stimulation using an audio interface for experiments with normal or impaired hearing subjects, and
    • the direct electric stimulation of cochlear implants for experiments with cochlear implant listeners.
  • ITD MultEl: Binaural-Timing Sensitivity in Multi-Electrode Stimulation

    Binaural hearing is extremely important in everyday life, most notably for sound localization and for understanding speech embedded in competing sound sources (e.g., other speech sources). While bilateral implantation has been shown to provide cochlear implant (CIs) listeners with some basic left/right localization ability, the performance with current CI systems is clearly reduced compared to normal hearing. Moreover, the binaural advantage in speech understanding in noise has been shown to be mediated mainly by the better-ear effect, while there is only very little binaural unmasking.

    There exists now a body of literature on binaural sensitivity of CI listeners stimulated at a single interaural electrode pair. However, the CI listener’s sensitivity to binaural cues under more realistic conditions, i.e., with stimulation at multiple electrodes, has not been systematically addressed in depth so far.

    This project attempts to fill this gap. In particular, given the high perceptual importance of ITDs, this project focuses on the systematic investigation of the sensitivity to ITD under various conditions of multi-electrode stimulation, including interference from neighboring channels, integration of ITD information across channels, and the perceptually tolerable room for degradations of binaural timing information.

    Involved people:

    Start: January 2013

    Duration: 3 years

    Funding: MED-EL

  • Bilateral Cochlear Implants: Physiology and Psychophysics

    Current cochlear implants (CIs) are very successful in restoring speech understanding in individuals with profound or complete hearing loss by electrically stimulating the auditory nerve. However, the ability of CI users to localize sound sources and to understand speech in complex listening situations, e.g. with interfering speakers, is dramatically reduced as compared to normal (acoustically) hearing listeners. From acoustic hearing studies it is known that interaural time difference (ITD) cues are essential for sound localization and speech understanding in noise. Users of current bilateral CI systems are, however, rather limited in their ability to perceive salient ITDs cues. One particular problem is that their ITD sensitivity is especially low when stimulating at relatively high pulses rates which are required for proper encoding of speech signals.  

    In this project we combine psychophysical studies in human bilaterally implanted listeners and physiological studies in bilaterally implanted animals to find ways in order to improve ITD sensitivity in electric hearing. We build on the previous finding that ITD sensitivity can be enhanced by introducing temporal jitter (Laback and Majdak, 2008) or short inter-pulse intervals (Hancock et al., 2012) in high-rate pulse sequences. Physiological experiments, performed at the Eaton-Peabody Laboratories Neural Coding Group (Massachusetts Eye and Ear Infirmary, Harvard Medical School, PI: Bertrand Delgutte), are combined with matched psychoacoustic experiments, performed at the EAP group of ARI (PI: Bernhard Laback). The main project milestones are the following:

    ·        Aim 1: Effects of auditory deprivation and electric stimulation through CI on neural ITD sensitivity. In physiological experiments it is studied if chronic CI stimulation can reverse the effect of neonatal deafness on neural ITD sensitivity.

    ·        Aim 2: Improving the delivery of ITD information with high-rate strategies for CI processors.

      A. Improving ITD sensitivity at high pulse rates by introducing short inter-pulse intervals

      B. Using short inter-pulse intervals to enhance ITD sensitivity with “pseudo-syllable” stimuli.

    Co-operation partners:

    ·        External: Eaton-Peabody Laboratories Neural Coding Group des Massachusetts Eye and Ear Infirmary an der Harvard Medical School (PI: Bertrand Delgutte)

    ·        Internal: Mathematik und Signalverarbeitung in der Akustik


    ·     This project is funded by the National Institute of Health (NIH).http://grantome.com/grant/NIH/R01-DC005775-11A1

    ·     It is planned to run from 2014 to 2019.

    Press information:

    ·     Article in DER STANDARD: http://derstandard.at/2000006635467/OeAW-und-Harvard-Medical-School-forschenCochleaimplantaten

    ·     Article in DIE PRESSE:http://diepresse.com/home/science/3893396/Eine-Prothese-die-in-der-Horschnecke-sitzt

    ·     OEAW website:http://www.oeaw.ac.at/oesterreichische-akademie-der-wissenschaften/news/article/transatlantische-hoerhilfe/


    See Also

    ITD MultEl

  • The aim of this project is to maintain the experimental facilities in our institute's laboratory.

    The lab consists of four testing places:

    • GREEN and BLUE: Two sound-booths (IAC-1202A) are used for audio recording and psychoacoustic testing performed with headphones. Each of the booths is controlled from outside by a computer. Two bidirectional audio channels with sampling rates up to 192 kHz are available.
    • RED: A visually-separated corner can be used for experiments with cochlear implant listeners. A computer controls the experimental procedure using a bilateral, direct-electric stimulation.
    • YELLOW: A semi-anechoic room, with a size of 6 x 6 x 3 m, can be used for acoustic tests and measurements in a nearly-free field. As many as 24 bidirectional audio channels, virtual environments generated by a head mounted display, and audio and video surveillance are available for projects like HRTF measurement, localization tests or acoustic holography.

    The rooms are not only used for measurements and experiments, also the Acoustics Phonetics group is doing speech recordings for dialect research and speaker identification, for example for survey reports. The facilities are also used to detect psychoacoustical validations.

    During the breaks in experiments, the subjects can use an Internet terminal or relax on a couch while sipping hot coffee...

  • Objective and Method:

    Current cochlear implant (CI) systems are not designed for sound localization in the sagittal planes (front-back and up/down-dimensions). Nevertheless, some of the spectral cues that are important for sagittal plane localization in normal hearing (NH) listeners might be audible for CI listeners. Here, we studied 3-D localization with bilateral CI-listeners using "clinical" CI systems and with NH listeners. Noise sources were filtered with subject-specific head-related transfer functions, and a virtually structured environment was presented via a head-mounted display to provide feedback for learning. 


    The CI listeners performed generally worse than NH listeners, both in the horizontal and vertical dimensions. The localization error decreases with an increase in the duration of training. The front/back confusion rate of trained CI listeners was comparable to that of untrained (naive) NH listeners and two times higher than for the trained NH listeners. 


    The results indicate that some spectral localization cues are available to bilateral CI listeners, even though the localization performance is much worse than for NH listeners. These results clearly show the need for new strategies to encode spectral localization cues for CI listeners, and thus improve sagittal plane localization. Front-back discrimination is particularly important in traffic situations.


    FWF (Austrian Science Fund): Project # P18401-B15


    • Majdak, P., Goupell, M., and Laback, B. (2011). Two-Dimensional Localization of Virtual Sound Sources in Cochlear-Implant Listeners, Ear & Hearing.
    • Majdak, P., Laback, B., and Goupell, M. (2008). 3D-localization of virtual sound sources in normal-hearing and cochlear-implant listeners, presented at Acoustics '08  (ASA-EAA joint) conference, Paris
  • Objective:

    Humans' ability to localize sound sources in a 3-D space was tested.


    The subjects listened to noises filtered with subject-specific head-related transfer functions (HRTFs). In the first experiment with new subjects, the conditions included a type of visual environment (darkness or structured virtual world) presented via head mounted display (HMD) and pointing method (head and finger/shooter pointing).


    The results show that the errors in the horizontal dimension were smaller when head pointing was used. Finger/shooter pointing showed smaller errors in the vertical dimension. Generally, the different effects of the two pointing methods was significant but small. The presence of a structured, virtual visual environment significantly improved the localization accuracy in all conditions. This supports the idea that using a visual virtual environment in acoustic tasks, like sound localization, is beneficial. In Experiment II, the subjects were trained before performing acoustic tasks for data collection. The performance improved for all subjects over time, which indicates that training is necessary to obtain stable results in localization experiments.


    FWF (Austrian Science Fund): Project # P18401-B15


    • Majdak, P., Goupell, M., and Laback, B. (2010). 3-D localization of virtual sound sources: effects of visual environment, pointing method, and training, Attention, Perception, & Psychophysics 72, 454-469.
    • Majdak, P., Laback, B., Goupell, M., and Mihocic M. (2008). "The Accuracy of Localizing Virtual Sound Sources: Effects of Pointing Method and Visual Environment", presented at AES convention, Amsterdam.
  • Localization of sound sources is an important task of the human auditory system and much research effort has been put into the development of audio devices for virtual acoustics, i.e. the reproduction of spatial sounds via headphones. Even though the process of sound localization is not completely understood yet, it is possible to simulate spatial sounds via headphones by using head-related transfer functions (HRTFs). HRTFs describe the filtering of the incoming sound due to head, torso and particularly the pinna and thus they strongly depend on the particular details in the listener's geometry. In general, for realistic spatial-sound reproduction via headphones, the individual HRTFs must be measured. As of 2012, the available HRTF acquisition methods were acoustic measurements: a technically-complex process, involving placing microphones into the listener's ears, and lasting for tens of minutes.

    In LocaPhoto, we were working on an easily accessible method to acquire and evaluate listener-specific HRTFs. The idea was to numerically calculate HRTFs based on a geometrical representation of the listener (3-D mesh) obtained from 2-D photos by means of photogrammetric reconstruction.

    As a result, we have developed a software package for numerical HRTF calculations, a method for geometry acquisition, and models able to evaluate HRTFs in terms of broadband ITDs and sagittal-plane sound localization performance.


    Further information: