Christian Kaseß

  • Branched Tube Vocaltract Model


    Computational models for speech production and analysis have been of research interest since the 1960s. Most models assume the vocal tract (VT) to be a segmented straight tube, but when pronouncing  nasals like /m/ and /n/ or nasalized vowels the nasal part of the vocal tract plays an important part and a single tube model is not feasible anymore. Thus, it  is necessary to consider a branched tube model that includes an additional tube model for the nasal tract. For these branched models, the estimation of the cross section area of each segments from a given signal is highly non trivial and in general requires the solution of a non-linear system of equations.


    The problem is overdetermined, and we have to add additional restrictions to our solution, for example restrictions on upper and lower bounds of the area functions or smoothness assumption about the vocal tract. To that end we introduced e.g. probabilistic methods (variational Bayes) into our model estimation.

  • LARS


    Rumble strips are (typically periodic) grooves place at the side of the road. When a vehicle passes over a rumble strip the noise and vibration in the car should alert the driver of the imminent danger of running off the road. Thus, rumble strips have been shown to have a positive effect on traffic safety. Unfortunately, the use of rumble strips in the close vicinity of populated areas is problematic due to the increased noise burden.


    The aim of the project LARS (LärmArme RumpelStreifen or low noise rumble strips) was to find rumble strip designs that cause less noise in the environment without significantly affecting the alerting effect inside the vehicle. For this purpose, a number of conventional designs as well as three alternative concepts were investigated: conical grooves to guide the noise under the car, pseudo-random groove spacing to reduce tonality and thus annoyance, as well as sinusoidal depth profiles which should produce mostly vibration and only little noise and which are already used in practice.


    Two test tracks were established covering a range of different milling patterns in order to measure the effects of rumble strips for a car and a commercial vehicle running over them. Acoustic measurements using microphones and a head-and-torso-simulator were done inside the vehicle as well as in the surroundings of the track. Furthermore, the vibration of the steering wheel and the driver seat were measured. Using the acoustics measurements, synthetic rumble strip noises were produced, in order to get a wider range of possible rumble strip designs than by pure measurements.

    Perception tests with 16 listeners were performed where the annoyance of the immissions as well as the urgency and reaction times for the sounds generated in the interior were determined also using the synthetic stimuli.

    LARS was funded by the FFG (project 840515) and the ASFINAG. The project was done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technology, and ABF Strassensanierungs GmbH.

  • PAAB


    Railway vehicles passing through tight curves can produce a high pitched noise called curve squeal. Curve squeal is a very salient type of noise located in the high frequency range that can range between a tonal narrow band and a wide band noise. The reason for the tonal noise is lateral creepage on the top of the rail, which excites wheel vibration at frequencies corresponding to their modes. Wide band noise, however, is caused by wheel flanges touching the rail.


    The project PAAB aims at investigating the effect on the perceived annoyance of such noises using in a perception test. Using the resulting perceptual characterization of curve squeal should aid in more adequately considering this type of noise in noise mapping.


    Based on previous conventional large-scale emission measurements as well as new measurements at immission distances using a head-and-torso-simulator representative samples for curve squeal will be derived and used in a perception test. This will also be aided by using synthetic well defined curve squeal noise.

    PAAB is funded by the FFG (project 860523) and the Austrian Federal Railways (ÖBB). The project is done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technololgy (project leader), Kirisits Engineering Consultants, and psiacoustic Umweltforschung und Engineering GmbH.



  • PASS - Psychoacoustic Analysis of Noise Emissions Induced by Railway Traffic

    The project PASS, which is processed in cooperation with the IEW of the TU Vienna and psiacoustic GmbH, deals with the psychoacoustic evaluation of noise. The project is a continuation of the project RELSKG and deals with high and low noise barriers that are simulated with the 2.5 D boundary element method (BEM) assuming incoherent line sources. The comparison of the 2.5 D BEM with measurements resulted in a good agreement. Additionally measurements with rail dampers were taken into account in the psychoacoustic tests. The evaluation was done in two tests with 40 test persons. The first test determines the relative annoyance and the second the just noticeable difference in annoyance. The results ware that freight trains at the same A-level are less annoying than passenger trains and that at the same A-level the noise behind a noise barrier is a little bit more annoying than without a measure. The project started in 2013 and lasts until the end of 2014.

  • RAARA - Residential Area Augmented Reality Acoustics


    We thank the Austrian Science Fund (FFG) for funding this project, grant number 873588. Principal Investigator is the AIT. Noise means trouble. In addition to traffic and industry, it is mainly emitted by heating or cooling appliances: Air heat pumps, recoolers and fans. In order to minimize noise immissions to the population in urban areas, the project is developing methods that enable simple, intuitive and at the same time accurate handling of noise emissions and their reduction.



    The aim is to virtually place the noise sources in a real environment VOR ORT using augmented reality before they are installed and to visually display the sound emissions in colour and make them audible. Obstacles or soundproofing measures such as walls, fences and walls are detected automatically or can be added virtually. In order to achieve these goals, comprehensive method developments for efficient acoustic calculation are required: frequency-dependent and time-dependent behaviour, absorption and reflection. This unique approach facilitates the planning of renewable heating and cooling appliances, increases the acceptance and thus the share of renewable energies and lowers the noise level in cities.






  • RELSKG: Development of a computational method for noise barriers with a complex geometry


    Standard noise mapping software use geometrical approaches to determine insertion loss for a noise barrier. These methods are not well suited for evaluating complex geometries e.g. curved noise barriers or noise barriers with multiple refracting edges. Here, we aim at deriving frequency and source- as well as receiver-position dependent adjustments using the boundary element method. Further, the effect of absorbing layers will be investigated as a function of the geometry. Results will be incorporated into a standard noise mapping software.


    The cross-sections of different geometries are first parameterized and discretized and then evaluated using two-dimensional boundary element simulations. The BEM code was developed at our institute. Different parameter sets are evaluated in order to derive the adjustments for the specific geometries compared to a straight noise barrier. To make the simulations more realistic, a grassland impedance model is used instead of a fully reflecting half plane. Simulations will also be evaluated using measurements from actual noise barriers.

    Noise reduction of a T-type barrier at 800 Hz

    Project partners:

    • TAS Schreiner (measurements)
    • Soundplan (implementation in sound mapping software)


    This project is funded from the VIF2011 call of the FFG (BMVIT, ASFINAG, ÖBB)

  • Vowel Tensity in Standard Austrian and Standard German

    FWF DACH I 536-G20: 2011-2013
    Cooperation with the Institute of Phonetics and Speech Processing, LMU Munich.

    Project leader (Austria): Sylvia Moosmüller
    Project leader (Germany): Jonathan Harrington


    Across languages, the distinction between so-called tense and lax vowels, e.g., Miete - Mitte ("rent" - "center") or Höhle - Hölle ("cave" - "hell"), is encountered in many languages. However, many different articulatory adjustments might cause this distinction, and these are language-specific.

    In the current project, we address this issue by analysing high tense and lax vowel pairs of the type bieten - bitten ("to offer" - "to request"), Hüte - Hütte ("hats" - "hut"), and Buße - Busse ("penance" - "busses") in two related language varieties: Standard Austrian German (SAG) and Standard German German (SGG). Previous studies suggest that high lax vowel pairs like bitten, Hütte, or Busse tend to approximate their respective tense cognates bieten, Hüte, and Buße.

    The research questions were investigated by a) comparing the tense and lax vowel pairs in SAG and SGG, b) by investigating whether high lax vowel pairs approximate their tense cognates in SAG, c) by investigating whether the high vowel pairs in SAG are distinguished by quality, by quantity, or by quantity relations with the following consonant, and d) by investigating whether an ongoing sound change can be observed in SAG, with young SAG speakers exhibiting a higher degree to merge the vowels than old SAG speakers.

    Main Results:

    SGG speakers clearly distinguish the high vowel pairs by quality, whereas speaker-specific strategies can be observed in SAG, with some speakers distinguishing high tense and lay vowel pairs by quality, others merging the quality contrast, but restricting the merger to velar contexts only, and still others merging high tense and lax vowels alltogether. In case of distinction, the differences between high tense and high lax vowels are less pronounced in SAG than in SGG and still less pronounced in the speech of young SAG speakers as compared to old SAG speakers. The same result was observed for quantity distinctions: All speakers differentiate the high vowel pairs by quantity, meaning that the tense vowels of the type bieten, Hüte, and Buße are longer than their respective lax cognates. Again, the differences are most pronounced in SGG and least pronounced in the speech of the young SAG speakers, meaning that the tense vowels of the type bieten, Hüte, and Buße are truncated in the speech of young SAG speakers as compared to old SAG speakers and SGG speakers. Results on the quantity interactions of vowel + consonant sequences prove quantifying aspects in SAG. Again, some age-specific differences emerged insofar as overall, young SAG speakers have shorter durations than old SAG speakers. However, they maintain the timing relations observed for the old SAG speakers. Results on perception strongly suggest that SAG speakers make use of quantity cues in order to distinguish the vowel pairs, whereas SGG speakers rather rely on cues connected with quality. Generally, it can be concluded that quantity distinctions are more relevant in SAG than in SGG.

    Project Related Publications:

    Harrington, Jonathan, Hoole, Philip, & Reubold, Ulrich.(2012). A physiological analysis of high front, tense-lax vowel pairs in Standard Austrian and Standard German.Italian Journal of Linguistics, 24, 158-183.

    Brandstätter, Julia & Moosmüller, Sylvia. (in print).Neutralisierung der hohen Vokale in der Wiener Standardsprache – A sound change in progress? In M. Glauninger & A. Lenz (Eds.), Standarddeutsch in Österreich – Theoretische und empirische Ansätze.Vienna: Vandenhoeck & Ruprecht.

    Brandstätter, Julia, Kaseß, Christian H., & Moosmüller, Sylvia (accepted). Quality and quantity in high vowels in Standard Austrian German. In: A. Leemann, M-J. Kolly & V. Dellwo (Eds.), Trends in phonetics and phonology in German-speaking Europe. Zurich: Peter Lang.

    Cunha, Conceição, Harrington, Jonathan, Moosmüller, Sylvia, & Brandstätter, Julia (accepted). The influence of consonantal context on the tense-lax contrast in two standard varieties of German. In: A. Leemann, M-J. Kolly & V. Dellwo (Eds.), Trends in phonetics and phonology in German-speaking Europe.Zurich: Peter Lang.

    Moosmüller, Sylvia. (in print). Methodisches zur Bestimmung der Standardaussprache in Österreich. In: M. Glauninger & A. Lenz (Eds.), Standarddeutsch in Österreich – Theoretische und empirische Ansätze. Vienna: Vandenhoeck & Ruprecht (=Wiener Arbeiten zur Linguistik).

    Moosmüller, Sylvia & Brandstätter, Julia.(in print). Phonotactic Information in the temporal organisation of Standard Austrian German and the Viennese Dialect. Language Sciences.

  • WiABahn - Acoustic Effect of Shielding Edges Near the Rail and Roofs Above Railway Platforms


    Railway platforms are located very close to the track and thus are assumed to alter the sound propagation. The degree of this effect, however, has not yet been investigated in detail


    The aim of the project WiaBahn was to investigate the shielding effect of railway platforms. One of the main questions was how to properly deal with the vicinity to the track, the platform’s large reflecting horizontal surface, and the often present canopy. It is unclear whether standard noise propagation prediction methods can be applied without modifications.


    Based on measurements directly at the platform as well as in the distance the acoustic effect of low railway platforms was investigated and suitable source models for the 2.5D boundary element method (BEM) as well as for standardized prediction methods were derived. The advantage of the 2.5D method which was also used in the project PASS is, that a constant cross-section can be combined with point sources or incoherent line sources which is not possible with pure 2D methods. 3D BEM is not feasible for such large structures.

    WiaBahn was funded by the FFG (project 845678) and the ÖBB. The project was done in cooperation with the  Austrian Institute of Technology (AIT, project leader) and Kirisits Engineering Consultants.