NIH

  • Bilateral Cochlear Implants: Physiology and Psychophysics

    Current cochlear implants (CIs) are very successful in restoring speech understanding in individuals with profound or complete hearing loss by electrically stimulating the auditory nerve. However, the ability of CI users to localize sound sources and to understand speech in complex listening situations, e.g. with interfering speakers, is dramatically reduced as compared to normal (acoustically) hearing listeners. From acoustic hearing studies it is known that interaural time difference (ITD) cues are essential for sound localization and speech understanding in noise. Users of current bilateral CI systems are, however, rather limited in their ability to perceive salient ITDs cues. One particular problem is that their ITD sensitivity is especially low when stimulating at relatively high pulses rates which are required for proper encoding of speech signals.  

    In this project we combine psychophysical studies in human bilaterally implanted listeners and physiological studies in bilaterally implanted animals to find ways in order to improve ITD sensitivity in electric hearing. We build on the previous finding that ITD sensitivity can be enhanced by introducing temporal jitter (Laback and Majdak, 2008) or short inter-pulse intervals (Hancock et al., 2012) in high-rate pulse sequences. Physiological experiments, performed at the Eaton-Peabody Laboratories Neural Coding Group (Massachusetts Eye and Ear Infirmary, Harvard Medical School, PI: Bertrand Delgutte), are combined with matched psychoacoustic experiments, performed at the EAP group of ARI (PI: Bernhard Laback). The main project milestones are the following:

    ·        Aim 1: Effects of auditory deprivation and electric stimulation through CI on neural ITD sensitivity. In physiological experiments it is studied if chronic CI stimulation can reverse the effect of neonatal deafness on neural ITD sensitivity.

    ·        Aim 2: Improving the delivery of ITD information with high-rate strategies for CI processors.

      A. Improving ITD sensitivity at high pulse rates by introducing short inter-pulse intervals

      B. Using short inter-pulse intervals to enhance ITD sensitivity with “pseudo-syllable” stimuli.

    Co-operation partners:

    ·        External: Eaton-Peabody Laboratories Neural Coding Group des Massachusetts Eye and Ear Infirmary an der Harvard Medical School (PI: Bertrand Delgutte)

    ·        Internal: Mathematics and Signal Processing for Acoustics

    Funding:

    ·     This project is funded by the National Institute of Health (NIH).http://grantome.com/grant/NIH/R01-DC005775-11A1

    ·     It is planned to run from 2014 to 2019.

    Press information:

    ·     Article in DER STANDARD: http://derstandard.at/2000006635467/OeAW-und-Harvard-Medical-School-forschenCochleaimplantaten

    ·     Article in DIE PRESSE:http://diepresse.com/home/science/3893396/Eine-Prothese-die-in-der-Horschnecke-sitzt

    ·     OEAW website:http://www.oeaw.ac.at/oesterreichische-akademie-der-wissenschaften/news/article/transatlantische-hoerhilfe/

    Publications

    See Also

    ITD MultEl